
Total Causal Influence1 CAUSAL INFLUENCE AS CONTROLLABILITY

1 Causal Influence as Controllability

This section expands section A.4 from the Janzing et al 2013 paper. We
provide an interpretation of the causal influence as the expected reduction
in uncertainty from being allowed to choose the value of a variable – after
other observed variables are chosen, but before the hidden noise variables.
This helps provide an intution for the causal inference of an arrow, which
will help give us an intuition for some of the surprising consequences of our
generalization to the causal influence of a path.

Consider a variable Y with parents X and Z. It follows from Lemma 3
of the 2013 paper that CX→Y can be written

EX,Y,Z log
P (y|x, z)∑

x′ P (x′)P (y|x′, z)
(1)

P (y|x, z) is, of course, the probability of getting Y = y if X and Z are
already chosen. The

∑
x′ P (x′)P (y|x′, z) can be interpreted as the proba-

bility of getting Y = y if Z is already chosen but X is chosen randomly.
We can hence see log P (y|x,z)∑

x′ P (x′)P (y|x′,z) as the reduction in uncertainty of the

event Y = y from choosing X = x.
Consider the example given by the structural equations

z = rand({0, 1}) (2)

x = z (3)

y = x⊕ z (4)

where ⊕ is the XOR operation. There are two assignments of nonzero
probability: X = Y = Z = 0, and X = Z = 1, Y = 0. Consider the
X = Z = 1 case; the other is symmetric. Here,

∑
x′ P (X = x′)P (Y =

1|Z = 1, X = x′) = 1
2 , indicating that, given we have picked Z = 1, there is

a 1
2 probability of obtaining Y = 0 if we randomly choose X. The P (Y =

0|X = 1, Z = 1) = 1 term means there is probability 1 of obtaining Y = 0
if we further allow ourselves to pick X = 1. Hence, if Z = 1, then choosing
X = 1 gives us 1 bit of uncertainty reduction in obtaining Y = 0. Averaging
with the other case gives us a causal influence of CX→Y = 1.

We now consider the hidden noise variables. Suppose Y is a deterministic
function of X,Z, and U , but U is hidden. Then we can write P (y|x, z) as∑

u P (u)P (y|x, z, u). We can write CX→Y as

EX,Y,Z log

∑
u P (u)P (y|x, z, u)∑

x′,u P (x′)P (u)P (y|x′, z, u)
(5)
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The top term can now be interpreted as the uncertainty in obtaining
Y = y if u is chosen randomly, while the bottom term is the uncertainty if
both X and U are chosen randomly. This is the sense in which we should
see ourselves as picking X after the other observed variables, but before the
hidden noise variables. In particular, this means that, in general, changing
the causal model so that a hidden variable becomes observed can change the
causal influence of other variables.

2 Indirect Causal Influence

2.1 Impact of Path Deletion

Similar to how the causal influence of an edge is defined using a notion of
the impact of edge deletion, we will define the indirect causal influence of a
path by creating a notion of path deletion.

The impact of an edge deletion is defined by the Kullback-Leibler diver-
gence between a distribution and a distribution where that edge has been
“cut,” meaning its source has been replaced with an independent copy of
the source variable. We proceed similarly in defining the impact of path
deletion. To create the modified distribution, we replace a path with a new
path where the source node X has been replaced with an independent copy
X ′, and all intermediate nodes Zi are replaced with the value that Zi would
have been had X had the value of X ′.

This modified distribution is most easily defined using the twin network
method for counterfactuals. Given a path X → Z1 → · · · → Zk → Y , we
create new nodes X ′, Z ′

1, . . . , Z
′
k, with edges between each, and replace the

edge Zk → Y with an edge Z ′
k → Y . X ′ will be distributed IID to X.

However, each Z ′
k will be a deterministic function of the previous node in

the path and the other parents of the original Zk – including the hidden
noise term for Zk. To obtain a distribution in the original variables, we
simply marginalize out the primed variables.

Consider the graph in Figure 1 for a probability distribution which
factors as P (X,Z1, Z2, Y ) = P (X)P (Z1|X)P (Z2|X)P (Y |Z1, Z2). Figure
2 shows the dual-network graphs for deleting the sets of paths {Z1 →
Y }, {X → Z1 → Y }, and {X → Z1 → Y, Z1 → Y } respectively.

Marginalizing out the primed variables, the first and third graphs factor
as P (X,Z1, Z2, Y ) = P (X)P (Z1|X)P (Z2|X)P (Y |Z2), with P (y|z1, z2) =∑

z′1
P (z′1)P (y|z′1, z2) and the other terms the same. However, for the second

graph, the unobserved noise term U1 introduces a back-door dependence
on the original Z1. Because we cannot condition on the unobserved term,
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we must condition on the original Z1. However, doing this introduces a
further dependence on the original X, so we must condition on X as well.
We thus must instead replace the P (Y |Z1, Z2) term with P (Y |z1, z2, x) =∑

z′1,x′
P (x′)P (z′1|z1, x, do(x′))P (y|z1, z2).

Terms like P (z′1|z1, x, do(x′)) are called counterfactuals. This term can
be read “the probability that Z1 would take the value z′1 had X been x′,
given that the actual values of Z1 and X are z1 and x.” It can be computed
by first conditioning on Z1 and X, using that to infer information about their
ancestor variables (including the hidden noise terms), and then setting X to
x′ and computing forward. Another way to compute them is by constructing
a twin network exactly like the one we derived it from, so that computing
the counterfactual reduces to just conditioning.
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2.2 Paths: To Join or Not to Join?

Consider Figure 3. What is the total influence of the paths X → Z1 → Y
and X → Z2 → Y ? We will show that it depends on whether we wish to
consider them together or separately.

Figure 4a shows two possible dual networks for deleting the impact of
these paths: one where both paths share a copy of X, and one where they
each get a separate independent copy.

Suppose the graph in Figure 3 followed the following structural equations

X = rand({0, 1}) (6)

Z1 = X (7)

Z2 = X (8)

Y = Z1 ⊕ Z2 (9)

(In this example, the hidden noise variables UZ1 and UZ2 are trivial.)
In this case, the influence of the set of paths {X → Z1 → Y,X → Z2 →

Y } is 1 bit because we can choose values flowing down each path so as to
completely control Y . However, the causal influence of the subgraph with
edges {X → Z1, X → Z2, Z1 → Y, Z2 → Y } is 0 because we cannot change
the value of Y by changing the value of X.

This phenomenon means that, when we give our general definition of
indirect causal influence below, it is not enough to provide a set of paths.
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Instead, we will need to provide a set of path sets, where each path sets is
a set of path originating from a single node.

2.3 Consistency of Overlapping Paths

The previous section shed some light on situations where we have multiple
copies of the source variable in a path. What if we have multiple copies of
an intermediate variable?

Consider Figure 5. We wish to create a dual network for deleting the
impact of the paths {X → Z → Y1, X → Z → Y2}.

Figure 6 shows two candidate twin networks for deleting the impact of
these paths. Which one is preferable?

In some sense, it shouldn’t matter, because Z is simply a deterministic
function of UZ and X: Z ′ and Z ′′ should always take on the same values.
In this case, we could express this by merging them together into a single
node. However, this is not an option in a more general case: we could not
do this if there were an additional variable W such that W was a parent of
Z ′ but W ′ was the corresponding parent of Z ′′. Yet, if W had no impact on
Z, this would be the same example as in Figures 5 and 6.

It indeed does not matter whether we use the twin networks in Fig-
ure 6a or Figure 6b, as long as, for the former case, we take into account
the dependence between Z ′ and Z ′′ through U , by e.g.: giving Z ′′ a term
P (Z ′′ = z′′|Z ′ = z′, Z = z,X = x,X ′ = x′). But how can we express this
once we have marginalized out Z ′ and X ′′? Because we expressed Z ′ as a
counterfactual, this means we will need to condition on a counterfactual.

Condioning on counterfactuals is well-studied, but requires us to use
different notation. We use the potential response notation of Judea Pearl,
where the notation Yx is used to denote the value of Y had X been x, so
that, e.g.: P (Yx = y) is equivalent to P (Y = y|do(X = x)). We can now
write the distribution of the resulting graph:

P (Y1, Y2|X,Z) =
∑

x′,z′,z′′

P (x′)P (z′|z, x, do(x′))P (z′′|z, x, Zx′ = z′, do(x′))P (y1|z′)P (y2|z′′)

(10)
We can see immediately that the product P (z′|z, x, do(x′))P (z′′|z, x, Zx′ =

z′, do(x′)) is 0 unless z′ = z′′. Hence, because we correctly modeled the de-
pendence between Z ′ and Z ′′, it does not matter whether we use separate
copies of Z in each path.
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2.4 Definition

We now provide the general definition for the causal influence of paths. As
we shall see, providing a definition that captures all the subtleties raised
above will be quite cumbersome. The general approach is the same as used
for defining the causal influence of an arrow:

1. Define a new probability distribution where the impact of paths has
been deleted

2. Define the causal influence of those paths as the Kullback-Leibler di-
vergence between that distribution and the original

We follow this general strategy for defining the new probability distri-
bution:

1. Input a set of path-sets, where the paths in each path-set all originate
from the same node. Paths originating from different variables can
always be treated separately; however, in different situations we may
want to treat paths from the same variable together or apart.

2. Transform the input into a set of path-sets where the paths in each
path set all terminate at the same node . The input now resembles
a set of trees, where the roots are the original nodes in the graph
(final things being influenced in a path), except that the leaf nodes
—the copies of variables which can be twiddled independently —are
shared between trees. This is done because we cannot have two copies
of a node if they are both meant to serve as a parent to the same
node. While we may be able to introduce additional sharing between
intermediate nodes, we can add conditioning as described above so
that it doesn’t matter. Despite the sharing, we will nonetheless refer
to these graphs as “trees.”

3. Write the joint probability distribution. When written in the form
created in the previous step, there is enough information available to
declaratively express the joint probability distribution, treating the
source nodes, terminal nodes, and intermediate nodes of paths as the
three distinct cases.

We will now begin the formal definition. We first define the transfor-
mation from lists of path-sets into tree sets. It will be helpful to consider
an example when reading this definition: the list of path sets ({X → Z1 →
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Y,X → Z2 → Y }, {X → Y }, {X → W → Z1 → Y }) in any graph that has
the corresponding edges will be transformed into a singleton set containing
the tree shown in Figure 7

We use S to denote a list of path-sets, where Si denoets the ith path-set.
We can then define the corresponding tree set as

T = {TY } (11)

TY = (VY , EY ) (12)

Before proceeding, we will need to define this auxilary function to give
us the appropriate transformed version of a variable:

trans : N× Path×Var→ Var (13)

trans(i, p,X) = X if X = Dest(p) (14)

trans(i, p,X) = X(i) if X = Source(p) (15)

trans(i, p,X) = XY otherwise (16)

We use the shorthand trans(i, p,X → Z) to denote the edge trans(i, p,X)→
trans(i, p, Z)

Now we can define

EY = {trans(i, p,X → Z)|p ∈ Si,Dest(p) = Y,X → Z ∈ p} (17)

VY = nodes(EY ) (18)

We need a couple more ingredients before we can state the general form of
the modified distribution. Fix an arbitrary variable ordering X1 < · · · < Xn,
where {X1, . . . , Xn} are the original variables of the graph. We then define
V ′ as the newly-introduced variables.

V ′ = (
⋃

VX) \ {X1, . . . , Xn} (19)

The overall modified distribution takes the form:

PS(X1, . . . , Xn) =
∑
v′

PX ∗ PY ∗ PZ (20)

The PX term represents the probability of the copies of the independent
variables. It can be written simply
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PX =
∏
x(i)

P (x(i)) (21)

where x(i) ranges over all variables of the form X(i) in V ′.
The PY term gives the probability of the original variables in the new

graph. Let PATY
Y be the parents of Y in the tree TY , and PATY

Y be the par-
ents of Y in the original graph, minus those variables with a corresponding
variable in TY . Then we can write

PY =
∏
y

P (y|paTY
Y , paTY

Y ) (22)

where y ranges over the original variables in the graph.
Finally, the PZ term gives the probability of the intermediate variables

in the paths. Here, for each modified Z in a tree, we infer the original
value of its unknown noise variable by conditioning on the original Z and its
parents, maintain consistency with the previously-seen modified versions of
Z by conditioning on their respective counterfactuals, and counterfactually
set its parents in the tree.

PZ =
∏
zY

P (zY |z, paz, (Zpa
TW
Zw

= zw)W<Y , do(paTY
z )) (23)

where zY ranges over all variables of the form ZY in V ′.
Now, we can define the causal influence of S as simply D(P ||PS).

2.5 Sensitivity to Functional Form

In the Janzing et al paper, we could ignore the need to specify deterministic
functions and noise variables in causal models, and simply work in terms of
conditional probabilities P (x|z). We now show that, for the indirect causal
influence, we will in general need to explicitly model the hidden noise terms:
two causal models may have identical conditional probability tables, but
different causal influences. The short explanation is that counterfactuals
such as P (z′|z, do(x)) are sensitive to the exact form of the dependence on
the hidden noise terms; the following example should make this more clear.

Example 1 (Noisy Copy A). Consider the graph in Figure 8. Suppose X is
uniform 0 or 1, Y is a perfect copy of Z, and X → Z implements a “noisy
copy” operation, so that P (Z = 1|X = 1) = 0.75 and P (Z = 1|X = 0) =
0.25. Figure 9 gives the corresponding twin-network for deleting the impact
of the path X → Z → Y .
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We now provide two models implementing this distribution. In model
1, Z = X ⊕ UZ , where UZ is a binary random variable. In model 2,
U consists of two independent random binary variables U1, U2, and Z =
if U1 then else U2.

The indirect causal inference of the path X → Y → Z is given by the
KL divergence between the distribution of the twin network and the original
distribution, namely EX,Z,Y

P (y|z)∑
x′,z′ P (x′)P (z′|x,z,do(x′))P (y|z′ . In model 1, we can

solve for UZ = X⊕Z, giving Z ′ = X ′⊕X⊕Z. We can use this to evaluate
P (z′|x, z, do(x′)) = 1 iff z′ = x ⊕ z ⊕ x′, resulting in a causal influence
of 1. In model 2, however, if x = z, then, for z′ = x′ = ¬x, we only
have P (Z = z′|x, z, do(x′)) = 2

3 . We can compute that the resulting causal
influence is 3

4 log 3
2 ≈ 0.43.

2.6 Sensitivity to Hidden vs. Observed Variables

The above example is also a good example of how changing a variable from
hidden to observed or vice versa can change the indirect causal influence. In
model 2 above, if we change UZ to an observed variable, the causal influ-
ence changes from 3

4 log 3
2 to 1

2 . This has the intuitive explanation that X
completely controls Y with probability 1

2 , giving us a causal influence equal
to 1

2H(Y ).
When UZ is unobserved and Z = X, the best we can do is infer that

there is a 2
3 chance that U1 = 1, meaning that changing X only has a 2

3
probability of affecting Z. As discussed in Section 1, when UZ is hidden,
we can think of ourselves as choosing X before UZ is chosen; when UZ is
observed, we pick X after.
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