
Program Analysis Without Repeating Yourself

James Koppel
Massachusetts Institute of Technology

jkoppel@mit.edu

Abstract
Traditional approaches towards implementing of dataflow analysis
and other language software suffers from many fundamental limita-
tions, typically requiring large amounts of work, with heavy dupli-
cation between conceptually-similar tools. We present a framework
that allows extremely modular implementation of language software.
Each target language is expressed as a collection of reusable, inde-
pendent pieces. We give each piece a novel typing which allows
them to be combined modularly while retaining the ability to be
specialized to certain uses. Semantics are then written as interpreters
which may be given multiple interpretations by supplying an eval-
uation context, and different evaluation contexts can be combined
through use of monad transformers. The end result is that from a
small handful of definitions, written as pure Java code, we can obtain
a bevy of language software such as interpreters, compilers, and
static analyzers, each of which can be specialized to multiple lan-
guages in multiple paradigms. Each language tool itself is composed
of multiple modular pieces, which allows us to combine them into
highly specialized compound tools such as superanalyzers, while
retaining the power as if we had written them as a monolithic whole.

1. Introduction
It’s exciting times at Automatic Code Solutions, as Richard’s team
is building a new product that’s going to shock the marketplace:
automatically making Go programs distributed. With all the infras-
tructure they’ve already built, creating it should be a piece of cake.
And yet as he lists all the analysis they’d need to do, he realizes
with a synching heart that every single one of them would be a new
development. Who’d have thought, that, among the thousands of
analyzers written by his company, no-one had bothered to write a
context-sensitive escape analysis for Go which can eliminate spuri-
ous paths by string-constraint solving and understands the interface
with SQL.

Today, building language software such as program analysis and
transformation tools means large amounts of effort for a fairly nar-
row tool. The result is that most useful tools are not worth building.
To understand the issues with typical approaches to designing a pro-
gram to perform static analysis or some other language-processing
task, consider the example of writing an analyzer to detect null-
pointer exceptions in Java, and the particular task of implementing

its ability to handle conditions of the form if (x == null) . Fig-
ure 1 gives an excerpt of the code that the SOOT framework [13]
uses to do this, while Figure ?? gives the corresponding code for
the ACCRUE framework [citation].

Value val=null;
if (left==NullConstant.v()) {

if (right!=NullConstant.v()) {
val = right;

}
} else if (right==NullConstant.v()) {

if (left!=NullConstant.v()) {
val = left;

}
}

if (val!=null && val instanceof Local) {
if (eqExpr instanceof JEqExpr)

handleEquality(val,outBranch);
else if ..

}

Figure 1. Simplified code from the NULLNESSANALYSIS of the
SOOT [13] framework.

if ((Binary.EQ.equals(n.operator()) || Binary.NE.equals(
n.operator()))) {

if (n.left() instanceof NullLit || n.right()
instanceof NullLit) {

Expr e = (n.left() instanceof NullLit) ? n.right
() : n.left();

return comparisonToNull(e,
Binary.EQ.equals(n.operator

()),
dfIn,
peer.succEdgeKeys());

}
}

Figure 2. Code from the NOTNULLDATAFLOW analysis of the
ACCRUE [citation needed] framework.

While there are a number of ways to restructure the code to
improve these snippets, these examples highlight a fundamental
facet about the way static analyzers are typically constructed which
imposes significant limitations on their modularity and extensibility:

• While information is passed between nodes semantically, each
transfer function itself is syntactic pattern matching. While sim-
ple, syntactic pattern matching requires manually enumerating
large numbers of cases, giving rise to the next two problems. It

is also highly error-prone — especially undesirable in software
which is supposed to be aiding program correctness!

• In order to make the number of cases small enough for com-
plete syntactic pattern matching to be tractable, the code must
first be preprocessed into an intermediate representation with
a restricted grammar. This provides fundamental problems if
we wish to use the analysis results to transform the program,
such as for refactoring or program repair (e.g.: [8], [6], [7])
purposes. Indeed, existing program repair frameworks typically
output their patches on preprocessed code, requiring the user to
manually translate and apply them to the original program. [cita-
tion??] The ACCRUE framework does address this by using an
expression-level flowgraph and building an expression evaluator
atop it, similar to the approach we will take, but still resorts to
pattern-matching at leaf expressions, and adds a new source of
error because the framework is not flexible enough to include
information about intermediate values in its type signatures , and
thereby resorts to using a type-unsafe stack.

• Large numbers of transfer function must be written, potentially
one per each syntactic construct. The semantics of the transfer
function for if-statements for a nullness analyzer may be me-
chanically derived from the semantics of if-statements and the
nullness-tracking abstraction, but here a large amount of code
must be written manually.

This approach to static analysis contains additional problems
which are less apparent in the example code, such as the following:

• Language software may only be written for one target language,
with substantial modification required to work on other lan-
guages, even when they are vastly similar. The standard solution
to this problem is to translate each language and version of
the language into a uniform representation, an approach taken
by large compiler infrastructure such as LLVM [citation], com-
mercial multi-language tools such as Coverity [citation], and
implicitly by any tool which operates on Java bytecode, such as
the example Soot program. However, translating to a uniform
representation intrinsically loses information, and hinders writ-
ing analyses specialized to languages that lack a construct — for
instance, an analysis which is only valid in the absence of pointer
arithmetic. (NOTE: Possibily include this tidbit: The company
“Microprocessor Solutions” does language translation using a
common universal representation. This produces translations
of low quality; for their success stories, they allegedly wrote a
custom direct translator which skips the IR. Semantic Designs
avoids a universal representation because of this problem.)

• Language software may not take advantage of analyses written
later to improve their results. For instance, consider the READ-
WRITESETSPASS of the ACCRUE framework, which relies on a
points-to analysis. If there is code that performs a write only if
some condition holds, and this condition implies a variable does
not point to something, the READWRITESETSPASS would need
to be rewritten to take this information into account, even if there
is already an analyzer that could provide this information. As an-
other example, the Checker framework [10] contains analyzers
for checking both nullness [citation] and typestate [citation], but
will spuriously report errors if there is a pointer which is deref-
erenced, but only under a typestate in which it cannot be null.
The Clang analyzer [citation] addresses this problem partially
by providing a bounded path-sensitive framework, and allowing
each analyzer to explicitly split states. However, analyzers still
cannot share information except through what is built into the
framework, and this restricts the expressivity of the framework.

In this work, we present a framework for writing language
software which addresses all these problems. Our general approach
is one of parametricity. In the old days, every single datatype
required its own sort function for corresponding lists. We now
have better abstractions that allow us to write a single sort function
which can be automatically specialized to something equivalent to
the hand-written ones (smart compilers can even take care of the
performance difference!). Similarly, by thinking carefully about how
we structure language software, we can write language software in
a way that captures the essence of a semantic construct, and build
components that can be automatically combined and specialized to
perform innumerable tasks.

Overall, we seek to create language software which is modular
in the following ways:

1. Modularity across languages: If we build tools for two languages
which are 90% similar, they should be able to share 90% of the
work.

2. Modularity across tools: Tools which require similar reasoning
should be able to share code, even if things such as path-
sensitivity are different. Tools should also be able to use facts
discovered by analyzers without being explicitly built to do so.

3. Modularity across interpretation. There should be no code that
could be mechanically derived from already-written code.

We present a framework which achieves a degree of modularity
in all three dimensions. To achieve this, we take a number of
novel departures from the typical construction of program analysis
or compiler frameworks. While a few of these ideas have been
previously seen in isolation in other contexts, many are new, and
ours is the first to combine them into something that can achieve
this level of modularity.

In total, our work makes the following contributions.

• Parametric interpretation: a way of writing interpreters abstractly
which allows them to be specialized into anything from flow-
graph generation to symbolic execution.

• Parametric syntax: A way of expressing languages as a combina-
tion of syntax fragments, and allowing tools to be expressed on
the fragments and combined into tools specialized for a single
language

• A novel typing of program terms which allows compile-time
constraints on which procedures may be executed on which
languages [NOTE: is this all it does?]

• A method for unifying AST nodes and flowgraph nodes of differ-
ent sorts into a single representation without losing information

• Modular monadic program analysis: A way of structuring an-
alyzers using monad transformers which allows them to share
information without being engineered to do so

In order to achieve the above, we also make two additional
contributions, discussed in the appendix:

• Monads without lambdas: A way of allowing framework users
to write monadic code without needing to write sequential code
as nested lambdas

• Proof-term embeddings: A method for embedding sophisticated
type systems in languages with first-order type systems by using
type-level proof terms

2. Parametric Interpretation
NOTE: This section is going to be more informal than other sections
because I realized when writing it that there were decisions I made

that were critical in getting the main result of this section whose
importance I hadn’t noticed before.

Also, the biggest results of this section were scooped by the
unpublished preprint “Abstracting Definitional Interpreters” by
Darais et al. Read that paper for much of the ideas and development.

We will still present our version, which has the added benefit of
type safety. The big ideas are:

• Low-level parametric abstraction lets us configure every aspect
of the execution

• Upgraded type system (or, less charitably, dynamic casts) allow
us to generalize the interface of abstract domains, letting us use
things that aren’t lattices as properties

• Using monads to parameterize control flow helps to reconcile
that concrete interpreters are deterministic, while abstract inter-
preters can be nondeterministic

Here are the components that are framework provides to realize
these ideas:

• The values used in evaluation are all “abstract values” operated
on through their interface. For instance, instead of using the
built-in integers, we use an AbstractInt type and operations
defined on that type, which may be instantiated with types repre-
senting concrete integers, intervals, etc. Note that, unlike as in
abstract interpretation frameworks, abstract values do not need
to be lattices. In particular, they may be concrete values. Lift-
ing this restriction allows us to unify interpreter and analyzer
implementation. However, this prevents us from interchanging
different possible abstract value types independently. For in-
stance, if we have a branching construct, then, if we introduce
an abstract boolean type which has “unknown” as a possible
value, this creates a “long-distance” constraint that all types
which could be the result type of the conditional must support
the “join” operation. To handle these long-distance constraints,
we perform a dynamic analysis step where each node of a lan-
guage is evaluated with TODO: figure out exactly what abstract
values they need to be evaluated with and what guarantees they
can make. This dynamic analysis step produces a certificate
CtxCert < C,L > that all long-distance constraints in an
(eval context, language) pairing have been satisfied, which is
required to actually evaluate the node. See Appendix A for more
discussion of the use of type-level certificates.

• The EvalContext encapsulates all parameters used when eval-
uating a node.

First, it contains a set of abstract value types, denoted by
AbstractV alue < C, S >, where C is the eval con-
text type, and S is the sort. So, for instance, the abstract
integer type associated with eval context C is denoted
AbstractV alue < C, Integer >; these may then be con-
verted to an unknown AbstractInteger type, so that calling
code may access the abstract integer operations.
Second, following modular monadic semantics [9], it pro-
vides a monad and a set of operations on that monad. So,
for instance, any StatefulEvalContext must provide put
and get operations. These naturally must act on some hidden
environment parameter, which is encapsulated in the asso-
ciated monad. To hide the monad choice from the language
implementer, we denote that monad with the ContextV al
type. So, for instance, a monadic value carrying an abstract
integer in the monad associated with eval context C would
be denoted ContextV al < C, Integer >; the impementa-
tion of C would use an unsafe assumption that no third-party
created a class implementing ContextV al < C, S >, and

would then cast values of that type into its internal monadic
representation. The operations provided by the EvalContext
will typically all return a monadic value. Computations in-
volving monadic values must be explicitly sequenced using
bind. This is especially important for abstracting AST nodes
that implement branching control flow, as it allows us to
meaningfully “take both branches.”
Third, it provides a late-binding of recursive eval calls. All
calls to eval should be threaded by invoking the eval context’s
eval method on a node, rather than calling the node’s eval
method directly. For example, the flowgraph-generating eval
context, described in detail in Section 5, will insert an edge
upon every evaluation call.
As an addendum, note that all recursive eval calls return
a ContextV al monadic value, which can only be used by
invoking their bind method and wrapping the remainder
of the computation in a lambda. For convenience, each
evaluation context also provides a “Sequential Evaluator”,
which automatically sequences the computation by using the
monads-without-lambdas technique of Appendix B

A simplified signature for the evaluation method of an AST node
is as follows. We explain in Section 4 that each AST node takes
as a type parameter an EvalContext type representing the onle
EvalContext type that the node may be evaluated in. We indicate
that type below with the type variable C. CtxtCert < C,L >
represents the type-level proof that the context and language are
compatible; see Section 3 for an explanation of the L language
parameter.

public ContextVal<C,S> eval(C c, CtxCert<C,L> cert);

With these evaluation contexts, we have essentially parameter-
ized out the data that evaluation operates on, the operations they use
to support their computation, and what happens in-between evaluat-
ing expressions. We can then essentially think of the implementation
of an AST node as choosing how to combine togetehr these various
building blocks; picking different abstractions for those building
blocks results in a different language tool. In Section 5, we give
a detailed example of how these elements combine to turn eval
functions into flow-graph generators.

2.1 Future Work
We need fully flesh out the story of what makes this different from
older versions of abstract interpretation: is there already some-
thing that can turn an interpreter into a CFG builder? We also
need to explore the “Monadic Abstract Interpretation” work of
David Darais and understand the connections. Also, one major
limitation of the current implementation is that an evaluation con-
text is given each abstract value type parameter independently.
However, they connect: to implement AbstractInt’s comparison
operators, you need it to be parametric over abstract booleans.
And it can’t be too parametric: you can’t return a definite answer
for < if both sides are unknown, so you can’t combine CON-
CRETEBOOLEAN with everything. Maybe I want something like
interface AbstractInt<I exteneds AbstractInt<I, C>,
C extends EvalContext<C>& HasAbstractInt<I>>; then can
use AbstractValue<C, Boolean> to refer to said parameters.

3. Parametric Syntax
If two laguages are 70% similar, then we should be able to share
70% of the work when writing a tool for each. The 70% that is
shared must therefore operate on a common datatype.

The classic approach to this problem is to translate each language
to a common representation (citation? examples?), and then operate

on the shared representation. This, however, hopelessly loses infor-
mation: each tool cannot assume the absence of a construct, and
transformation becomes impossible. Our dilemma is that we need
both the ability to write one piece of code that operates on multiple
languages, and yet have that code be specialized to each.

Our solution is to decompose each language into a set of
fragments, and write portions of an analyzer or transformer for
each fragment. Our approach is directly based off the compositional
data types of Bahr and Hvitved [1]. Our main contribution is to show
how to adapt their approach to languages without higher kinds.

Compositional data types are themselves an extension of the
older sum-of-products representation of abstract syntax, perhaps
best known from Wouter Swierstra’s seminal “Data Types à La
Carte” paper [12]. We briefly explain the sum-of-products represen-
tation here.

• Each AST node type is a product type, i.e.: a record of fields.
However, the AST node type constructor takes a type parameter
e for all recursive positions in the product. So, for instance, an
assignment node take the form Assign Name e, where e is a
type parameter. This allows the RHS of the assignment to be any
RHS from the language, where the language is later determined

• Each AST node in the language is summed together. We also
have the choice of first summing different types into fragments,
and then summing fragments together into a language signature.
So, a fragment for arithmetic might take the form Arith e =
AddExpr e + MultExpr e, and entire language might then be
written LangSig e = Arith e + Assign e . Note that we
keep the type parameter for recursive holes and propagate it to
each summand.

• The language signature is closed using a type-level fixpoint:
Lang = Fix LangSig, where Fix f = f (Fix f).

The end result is that we have broken the syntax of a language
into multiple fragments which can be combined at will. This relies
in a fundamental way on the type-level fixpoint Fix, which has
kind (⇤ ! ⇤)! ⇤, and thus cannot be implemented in a language
without higher kinds.

As they say, every problem in computer science can be solved
with an extra level of indirection, which is exactly the approach
we take. There are two components to our solution. First, for every
AST node type A : ⇤ ! ⇤, we define an associated tag tA : ⇤, and
a mechanism + : ⇤ ! ⇤ ! ⇤ for summing them. We must then
define a “reifier” constructor R such that, if ts = tA1 + · · ·+ tAn ,
then R ts ⇠= A1ts + · · · + Ants. We can then write all recursive
positions in a type constructor using R, and leave open the exact set
of terms which it may represent by parameterizing the tag list.

We show how a conventional type defined using explicit type-
level fixpoints can be expressed using the R constructor. A recursive
type representing a list of integers can be written using explicit
type-level fixpoints as follows:

IntListF e = 1 + int ⇥ e

IntList = FixIntListF

To transform this into a version using the R constructor and no
use of higher kinds, we replace the type parameter representing
recursive instances, e, with a type parameter for the tag associated
with recursive instances, t, and replace all uses of e with R < t >.
We can then replace the use of a type-level fixpoint by simply
picking a tag that corresponds to the unfixed constructor.

IntListF t = 1 + int ⇥R t

IntList = IntListF tIntListF

Constructing the R constructor is straightforward in a language
with open sums, i.e.: most languages with class-based inheritance.
Every constructor we may possibly want in a recursive position
is defined to inherit from the R type and accept a tag list ts.
However, for each such constructor A, we ensure that the type
A ts is inhabited if and only if tA 2 ts. We can do this by requiring
that constructing an instance of A ts requires a type-level proof that
tA 2 ts, which we can do using the techniques of Appendix A.
Associating a tag with each type constructor is trivial. In Java, this
becomes particularly convenient thanks to Java’s support for raw
types: every type constructor of kind ⇤ ! ⇤ may also be used at
kind ⇤.

So, a language ArithLang with addition, multiplication, and
assignment may be expressed as follows:

R ts = Add ts+Mult ts+Assign ts+Other ts

Add ts = R ts⇥R ts if tAdd in ts

Add ts = void otherwise

Mult ts = R ts⇥R ts if tMult in ts

Mult ts = void otherwise

Assign ts = Name ts⇥R ts if tAssign in ts

Assign ts = void otherwise

ArithLangExp = R(tAdd + tMult + tAssign)

In summary, this is how we represent terms in our framework:

• Each AST node implements a common Term interface.
• Every AST node takes a type parameter L tagging that it is to

be interpreted as an expression of a language associated with L.
Each AST node’s children must also be tagged with L.

• A language is expressed as a type-level list of AST node types.
In order to construct an AST node tagged with a language, we
must present type-level proof that the AST node is present in
that language. We do this using the techniques of Appendix A.

3.1 Dealing with Multiple Sorts
Not every term can fit into every spot of a syntax tree. The syntax
definition above allows us to insert assignment statements into
addition nodes. We need an additional mechanism to specify the
sort of every recursive occurrence.

Bahr and Hvitved offer a solution to this problem which is quite
straightforward to adapt to our setting. Every type constructor is
given an additional tag indicating its sort, and every occurrence is
tagged with the sort of terms that may appear there. While, in the
original setting, this requires an upgrade from ADTs to GADTs,
here we only need the ability to inherit from a partially-applied
type constructor, which can be done using ordinary Java inheritance.
We simply add an extra type parameter to our Term constructor
indicating the sort of the desired term.

As an example, here is how we can declare an assignment node
type of sort “Statement”, whose right child must be of sort “IntExp”.

public class Assign<L> extends Term<L, Statement> {
private Name lhs;
private Term<L, IntExp> rhs;
...

}

This setup allows us to define the syntax of a language in a
manner fully isomorphic to traditional ADT-based approaches, while
enjoying modularity between languages.

4. Typing Expression/Context Compatibility
In Section 2, we introduced the idea of evaluation contexts as the
means by which we can derive tools from a language’s semantics by
parameterizing key details of processing an expression. In Section 3,
we showed how we get modularity between languages by expressing
each language as a collection of fragments. This poses a problem:
some languages can only be run under some evaluation contexts.
A language with continuations cannot be run in an interpreter
that doesn’t support continuations, and a language with memory
allocation requires that any analysis provide some model for memory
allocation. We now show the final ingredient of how we type
programs. We now show how we use the type system to allow
terms to impose constraints on what evaluation contexts they may
be run in.

Our end goal is that we wish the type system to enforce that a
node can be evaluated in a given evaluation context if and only if the
evaluation context satisfies the constraints imposed by that language.
We also wish to reuse each node in different languages which have
different constraints.

One approach is to simply ignore the problem, and trust the
programmer to only use appropriate evaluation contexts. However,
this fails if this constraint is actually needed in the implementation.
The eval function for an Assignment node must be able to call
the putV ar operation on its evaluation context. Unless we resort to
dynamic casts, this requires constraining the evaluation context type
to something that supports this operation.

Our approach is to associate a constraint with each node type.
These combine together to give a constraint for an entire expression.
A language serves as a static guarantee of what node types may
appear in an expression, and hence allows us to overapproximate
the constraints that may appear in an expression. Any evaluation
context which satisfies the constraints of a language may then be
used to evaluate an expression from that language.

Below, we explain the components of this typing:

• Each AST node takes a type parameter C, and may only be
evaluated in an evaluation context of type C. For the remainder
of his section, we will pretend this is the only type parameter of
a node, and write Node<C>, and refer to C as the associated eval-
uation context type. (Note that this is not actually a restriction
due to our use of polymorphism.)

• Each AST node is also associated with a constraint U , and
instantiating it to NodeType<C> requires C ✓ U < C >.

• The associated evaluation context type of a node must match
that of its children, meaning we can meaningfully speak of the
associated evaluation context type of the entire tree. The result
is that, if the nodes in an AST have constraints U1, . . . , Un,
then the associated evaluation context type C must satisfy
C ✓ U1 u · · · u Un.

• We then give pick a type D ✓ U1u· · ·uUn, and give the overall
expression the type 8C ✓ D < C >,RootNodeType < C >,
where the notation 8C ✓ D < C > denotes F-bounded
polymorphism [2].

To gain some intuition for this scheme, simply note the informa-
tion flow. We need to ensure compatibility between each node in
a term and an evaluation context it will be run in. Each node has
a constraint indicating that an evaluation context it’s run in must
support certain operations. The associated evaluation context type
of the term must satisfy the constraint of every node. We generalize

this with F-bounded polymorphism to any applicable evaluation
context type. The constraints flow from the individual nodes, into
the associated evaluation context type of the term, into the constraint
placed on the outer F-bounded generalization, where a comparison
is made to the final evaluation context we wish to use.

The end result is that we have a term that, after instantiating its
type parameter, may be run in an evaluation context if and only if
that evaluation context satisfies the collective constraints of every
node in that term.

In order to implement this in Java, we again use the techniques
of Appendix ??, creating a type for the F-bounded abstraction of
another type, and encoding the typing rules as proof terms.

4.1 Future Work
We still don’t have a good story for how to incorporate negative
constraints into the type system, such as for a simple dataflow-
graph generator which only works for languages without mutable
state. We can do various encodings, such as explicitly writing
certain properties of a language as a type-level list, and requiring a
certificate that an evaluation context has been checked against each
member of that list in order to run it on terms of that language.
However, this has the drawback that it is an externally-posed
constraint: it is simple to write the analysis without requiring the
lack of a property. Conversely, the constraints we speak of above
are intrinsic: one cannot write an Assignment AST node that does
not require its evaluation contexts to support the putV ar operation
or equivalent.

5. Example: Flow graph generation
We now present a full example of a language tool developed in
our framework: a control-flow graph generator. We aim to create
an evaluation context called FlowGraphContext such that, when
a term is evaluated in the FlowGraphContext using its normal
evaluation rules, it will produce a control flow graph instead of being
interpreted. Our control-flow graph is based on a single rule: every
expression evaluated has a control-flow edge from the last evaluated
expression.

For our first attempt, we have the context maintain a graph,
and track the last evaluated expression. Whenever we evaluate an
expression, we create an edge from the last expression to the current
one, and update the last evaluated expression. The last evaluated
expression is initialized to a special RootNode to indicate entry to
the procedure. The ContextV al for the FlowGraphContext is
simply the identity monad. The other operations are trivial.
public class FlowGraphContext extends EvalContext
implements HasAbstractBoolean<UnknownBoolean>,

HasAbstractInteger<TrivialInt> {
private Graph graph = new Graph();
private Exp<?, ?> prevExp = new RootExp();

...

public <S> ContextVal<FlowGraphContext, S> eval(Exp<
FlowGraphContext, S> exp) {

graph.addEdge(prevExp.getLabel(), exp.getLabel());
prevExp = exp;
return exp.eval(this);

}

private static class FlowGraphContextVal<S> extends
ContextVal<FlowGraphContext, S> { ... }
}

This works beautifully for straight line code. However, if each
node is only evaluated once, this will never create multiple outgoing
edges from a single node. Clearly, something more is needed if we
wish to handle conditionals.

5.1 Conditionals
When evaluating either branch of a conditional, the last evaluated
expression will be the same for both: the condition. In order to cap-
ture this, we will need to move the state of the previously evaluated
expression into the monad using a state monad construction. Essen-
tially, the current state containing the last evaluated expression is
then copied to both branches, which can add the appropriate edges.

What about after evaluating the branches? The statement follow-
ing the if will need incoming edges from both branches. Somehow,
we need a way for their to be multiple “last” evaluated expressions.

Let us observe how we implement conditionals in our framework.
Conditionals are implemented using the following eval method,
based off the branch method of the AbstractBoolean interface.

public ContextVal<C,S> eval(C c) {
c.eval(cond).bind((b) -> b.branch(
() -> c.eval(thenBranch),
() -> c.eval(elseBranch)

));
}

The FlowGraphContext uses UnknownBoolean for its
AbstractBoolean type. The UnknownBoolean will execute
both branches, and joins the results of both, requiring the results to
implement the Joinable interface.

The nondeterminism monad provides exactly what we are look-
ing for. Running eval results in a function, which, when given the
last evaluated expression, results in a collection of possible resulting
states, each with their own value for the new last-evaluated expres-
sion. Joining two such results simply combines the possible resulting
states. Now, when running the eval function of the If construct, we
get edges from the condition to the first node of both branches, and
a collection of states indicating that the last node of either branch
could be the last-evaluated expression. When evaluating the next
node, the monadic bind operation of the nondeterminism monad
will execute it twice, creating edges from both possible values of
the last-evaluated expression.

Most commonly, nondeterminism is implemented by accumu-
lating results in a list. In our case, this results in path-sensitive
semantics, where the state splits at every conditional, and never
recombines. We want identical states to collapse back down, which
we can do by using a set instead of a list.

Additionally, remember that we need to accumulate all re-
sults into a graph. Our final type of the eval : Exp[S] !
ContextVal[FlowGraphContext, S] thus expands into the follow-
ing:

Exp[S]! Exp! Set[Exp⇥ AbstractValue[S]]⇥ Graph

Using monad transformers, this would be expressed as

Exp[S]! StateT Label (WriterT Graph) AbstractValue[S]

However, because updates to the graph are associative-commutative
and live outside the nondeterministic component, it is actually equiv-
alent to move the graph out of the monad and into the mutable state
of the FlowGraphContext, meaning all graph updates are written
directly into the final result, instead of into lots of mini-graphs
which are combined into the final graph. This can be seen as a trivial
application of the techniques of Appendix B.

5.2 Loops
It’s not obvious from the above how this scheme can handle loops,
which involves creating cycles in the graph. To understand how we
deal with this, it’s helpful to look at the actual interpreter code for a
while loop. Our interpreter for while loops is implemented roughly

as follows. Our actual implementation eliminates the inner bind
using the techniques of Appendix B.
public ContextVal<C,S> eval(C c) {
return c.eval(cond).bind((b) -> b.branch(
() -> c.eval(body).bind((_) -> c.eval(this)),
() -> c.makeVoid()

));
}

Similar to if’s, we see that the state splits in two when we
evaluate the condition. In the first branch, the previous state will be
cond, and we create an edge into the body, and then from the last
constituent of body back into the while node when we make the
recursive call, creating the desired back-edge. The problem is that
we then evaluate the current while again, endlessly traversing and
creating the same edges.

To fix this, we cache all visited nodes, and, if we visit a node
again, instead of evaluating the node again, we return an empty
set of states, essentially taking the interpretation that this path will
loop forever. We probably could get a much better story for this,
generalize it, and frame it as a fixpoint operation. This is quite close
to, but probably worse than, the approach taken in the unpublished
work of Darais et al that scooped this. (citation needed)

The end result is that evaluating the while node creates the
expected edges, and results in a single state in which cond is the
previous expression; i.e.: while loops always evaluate their condition
last before exiting. The next expression evaluated will hence get a
single incoming edge from the condition of the while loop.

5.2.1 Related Work
Initially, we thought this problem was reducible to monadic fixpoints
[5]. However, we soon discovered our need for a fixpoint is very
different from that of [5]. In particular, their notion of fixpoint, when
applied to the state monad, requires that the value be computable
without referencing the state. This is in general not true in our
setting: e.g.: when interpreting a variable node, the value (the result
of interpretation) will depend on the state (the environment).

5.3 Invoking the Generator
To invoke the generator, we must first create a term using the typing
described in Section 4, specialize it to the FlowGraphContext type,
create a flow graph context, and then invoke it on the term.

We give our example here in a hypothetical extension to Java
augmented with first-class F-bounded polymorphism. Our actual
implementations embeds this into standard Java 8 using the tech-
niques of Appendix A. We also simplify away some of the extra
parameters and type parameters related to parametric syntax and
language-context compatibility.

We first must create the term. The term is given a type in-
dicating that it may be evaluated in any evaluation context that
satisfies the necessary conditions. Our example term contains
an Assign node, which requires that its argument implement
StatefulEvalContext.
(8C ✓ StatefulEvalContext. Exp<C>) term =
Generalize(S) new Assign<S>(...));

We then must specialize the term to run in the FlowGraphContext.
Doing so requires a type-level proof that FlowGraphContext ex-
tends StatefulEvalContext.
Exp<FlowGraphContext> flowGraphTerm =
term.instantiate(Extends.<FlowGraphContext,

StatefulEvalContext>make());

We are now free to evaluate the term under a FlowGraphContext:
return new FlowGraphContext().eval(flowGraphTerm).

getGraph();

6. Next Steps
6.1 Having multiple abstract types together in an

interpretation
In Section 2, we showed how parameterizing the abstract values of
an interpretation helps to allow us to instantiate an interpreter as one
of many tools. Unfortunately, there is a whole in our presentation:
while we independently varied each abstract type, in reality the
abstract domains are intertwined. We may be able to implement
abstract booleans and abstract integers separately to implement
operators such as branch and add, but, to implement compare,
we need them tied together. Some will be incompatible, which
makes the choices non-independent. For example, we can only use
ConcreteBoolean’s if all other domains are precise enough to
return a definite answer.

While Opal [4] also allows for modular mixing-and-matching of
the abstract domains for different program types, each operator re-
turns an instance of the DomainV alue type, a tagged sum of each
abstract type. Meanwhile, for returning the result of comparisons, no
customization is possible: it may only return a value in three-valued
logic. This is appropriate for its use doing abstract interpretation of
Java bytecode, when every result will be immediately placed onto
an untyped stack, but it is insufficient for being able to reinterpret a
concrete interpretation, as we do here.

6.2 Dataflow Computation Via Open Recursion
How do we implement a dataflow analysis in our framework? This
requires that we evaluate nodes out of order, perhaps multiple times.
It would seem at first blush that we can’t do this while keeping
computation with the eval functions of the various nodes: the eval
functions invariably call eval on their children, which call eval
on their children, etc, seemingly prohibiting any kind of external
control over scheduling computations.

In fact, this is not so, because nodes do not directly eval their
children; rather, they request that the evaluation context do so,
allowing us to supply a late-binding for the recursive eval invocation.
The evaluation context is free to then serve cached results and
schedule and reschedule computation of a node. This effectively
separates computation of each node, allowing us to run them as a
dataflow analysis.

Note that not every desirable transfer function can be cleanly
expressed as a specialization of a node’s eval function; for that,
we will need to provide the ability to supply a different transfer
function. However, many “congruence” rules in a dataflow analysis
– ones that merely pass along or restructure information, or deal with
branching – are easily expressible as such, so we foresee substantial
savings in implementation cost from being able to express them so.

Note that our representation allows the children of any node to
be set to anything which implements the Exp interface, is tagged
with the correct sort, and belongs to the same language – and we
are free to augment languages with extra nodes for analysis. We
can thence achieve the same effect by setting the children of each
node to an IndirectExp object peered with an actual node of the
program. The eval function of the IndirectExp object can look
up the results from eval’ing the node in some data structure.

6.3 Monadic Combination of Analyses
Typical implementations of dataflow analysis are inherently unmod-
ular. Think back to our examples of the two nullness interpreter
needing to handle statements like if (x == null) . We can see
from their need to special case these statements that they might not
be able to handle more complicated conditions involving correla-
tions of several variables that imply lack of nullness. In Section 1,
we also gave an example of the inability for a third nullness checker
to use information given by a typestate checker to refine its results.

Ideally, these individual reasoning components – of analyzing im-
plications between conditions, of tracking the nullness of a variable,
of tracking the typestate of an object – could be designed separately,
and then combined together to create hybrid analyses of arbitrary
precision.

This lack of modularity is fundament to the way they are
designed. A dataflow analysis can be seen as a mapping from each
program point p to a transfer function fp : State ! State. This
decomposition is inherently unmodular: the type State! State is
invariant in the State, meaning that any modifications to the state
will break the transfer function.

Our suggestion is to instead write transfer functions using a
type Constraints m) State! m State, where m is some monad.
Essentially, this indicates that the analysis can operate in some
undetermined monad as long as it provides certain operations. For
instance, a nullness analyzer may demand operations for querying
and setting the nullness of a variable, but leaves unspecified the
precise monad, allowing a monad providing these operations to be
combined using monad transformers with ones providing operations
for other analyzers, similar to the technique of modular monadic
semantics [9] for writing modular interpreters.

As an end result, we hope to be able to produce analyzers in a
manner similar to the following:

Analyzer a = new Analyzer();
a.addDataflowState(new NullnessLattice());
a.overrideTransferFunction(new BooleanConstantProp());

The idea is that the BooleanConstantProp object will be able
to automatically case split on predicates such as x == null. For
most predicates, like x == 1, both branches will result in the same
state; however, for predicates like x == null, the nullness lattice
will be able to track this property, and we will get behavior exactly
like an implementation of a nullness analyzer that special-cases
these conditions.

This is probably related to the approach taken in [3] and [11]. I
still need to investigate these works to understand it.

7. Related Work
– tagless final – mms – data types a la carte, compositional data types
– Polyglot has expression-level CFGs – Lerner, Grover, Chambers –
calculating correct compilers – Gulwani’s method – David Darais’s
work – One of the things ezyang sent me

A. Enhancing Java’s Types with Proof Terms
The Java type system is far more powerful than most, both com-
puter scientists and practioners, realize. Its Hindley-Milner type
system with class-based subtyping allows for encoding numerous
constraints, including ones which would be difficult to encode in a
type system with arbitrary first-order polymorphism like System F.

Nonetheless, there are many useful things it can’t express directly.
Higher kinds are missing, and with it, the ability to express things
like monad transformers. So is higher-rank polymorphism.

However, the presence of type variables and type constructors
is a master key, for it gives us an ability that allows us to overcome
these shortcomings: the ability to define arbitrary type-level terms,
and their rules for composition. Using this, we can encode proof
rules for arbitrarily-complicated type systems, and enforce far more
interesting constraints, at the price of having to manually construct
the derivations.

A.1 Simulating Higher Kinds
For our first extension, we show how to simulate higher kinds.

Java allows defining type constructors. For example, the List
type constructor takes a type E and returns List < E >, the type

of lists of E. However, we cannot have a type variable for a type
constructor. We cannot express a type F < E >, where both F and
E are variables.

However, let us consider implementing a type system with
type-level applications. To do so, we would create a AST node
TApp : Type ! Type ! Type. Node that this has the exact
same signature as a type-level pair constructor, TPair : Type!
Type ! Type. From the meta-languange’s perspective, there is
no syntactic difference between an ordinary type variable and one
representing a type construtor.

We can hence exploit the syntactic isomorphism between type-
level application and type-level pairs to create first-class type-level
application in Java.

We can create type-level pairs simply by creating any type
constructor with two arguments; the pattern-matching in Java’s
type system allows for destructuring. To allow this to represent type-
level application, we must allow the first argument to represent a
constructor of a higher kind. While Java’s kind system does not
permit this directly, we can create a constructor of kind Type which
is isomorphic to a higher-kinded constructor.

More concretely, we represent an application F < X > by defin-
ing a type constructor App and representing it by App < F 0, X >,
where F 0 is some type which is in one-to-one correspondence with
F . In Java, we can simply use the type constructor’s correspond-
ing raw type. So, the type application List < String > could be
represented as App < List, String >.

Now, to invoke a function defined in terms of App < F,X >,
we must be able to convert between the isomorphic F < X > and
App < F,X > types. We clearly cannot write a function of type
8F,X.F < X >! App < F,X > because we cannot even write
F < X >.

Our first attempt is to simply write one pair of functions lift :
F < X >! App < F,X > and proj : App < F,X >!
F < X > for each possible F . So, for instance, we would
write liftList : List < X >! App < List,X > and
projList : App < List,X >! List < X >. Note that
writing the latter requires performing a typecast, which is type-
safe as long as the rest of the system was implemented correctly.
Clearly, this is quite cumbersome as the number of type constructors
of interest grows large. Furthermore, each cast is a “backdoor” to
the system; we desire to keep the number of such backdoors small
and centralized, which is difficult if each user needs to add a new
one for each constructor.

While we cannot escape the need to create something specific
for each type-constructor, we can improve on this somewhat by
using proof terms, described below. We first define a new type
constructor TypeIso : Type! Type! Type. Using the prenex
polymorphism available in Java, for each F of interest, we define a
term 8X.TypeIso < F,X >. For example, the definition for List
is given as follows:

public static <X> TypeIso<List<X>, App<List, X>> list
() {

return new TypeIso<>();
}

We can then simply define functions

liftIso : 8U,F,X.TypeIso < U,App < F,X >>! U ! App < F,X >

and

projIso : 8U,F,X.TypeIso < U,App < F,X >>! App < F,X >! U

Now, we need only define a single parametric TypeIso term for
each constructor of interest. While we still must provide a backdoor
to allow the construction of a type-isomorphism proof term between

arbitary types, these are much easier to check, and each module can
keep all such definitions in one place. As first-class proof terms, we
can also manipulate these, and transform them using symmetry and
transitivity laws.

This example illustrates the general interplay between generic
machinery, which can shuffle around higher-kinded types as simple
variables, and its specific uses, where type-specific terms are needed.
While our extended type system is generic, at the end of the day,
we must use it in an ordinary Java program, and that part must be
specific.

(Random theoretical sidenote: Note that we are requiring the
existence of an isomorphism between a base type and functions on
that base type. This is possible because we are in a constructive
setting. There’s probably not anything interesting to say about this.)

A.1.1 Example: Monad Transformers
Conventional wisdom states that creating type-safe monad trans-
formers in Java is impossible because of its lack of higher-order
kinds. However, we’ve shown above that we can simulate higher-
order kinds in Java. We show now that we can also create type-safe
monad transformers.

A monad is a type constructor M : Type ! Type and an
interface containing two methods: return : 8X.X !M < X >
and bind : 8X,Y.M < X >! (X ! M < Y >) ! M <
Y >. The encoding into Java is straightforward:

public interface Monad<M> {
public <E> App<M, E> ret(E e);
public <E,F> App<M,F> bind(App<M, E> m, Function<E,

App<M, F>> f);
}

This allows us to define subinterfaces for certain monadic
operations. For example, here is the interface for a state monad
with state S and constructor F :

public interface MonadState<S, F> {
App<F,S> get();
App<F, Void> put(S s);

}

A monad transformer is a type constructor T : (Type !
Type) ! Type ! Type with an associated method lift : 8X :
Type,M : Type ! Type.MonadM) M < X >! T <
M >< X >. The encoding into Java becomes straightforward
using our App constructor. Note that we need to explicitly pass in a
Monad instance so that it can invoke the relevant return and bind
functions.

public interface MonadTrans<T extends MonadTrans<T, F>,
F> {

public <A, M extends Monad<G>, G> App<App<F, G>, A>
lift(M monadInst, App<G, A> m);

}

It is now straightforward to define monad transformer instances
with an appropriate bind method, such as the state monad trans-
former. However, the main part of implementing monad transform-
ers is not the bind method, but the corresponding monad instances.
For specific monad/transformer pairs, we will need to be able to be
able to construct a Monad instance for the result of lifting a certain
monad through a certain monad transformer. To do that, we create a
new monad instance which takes a base monad as a parameter. For
example, here we show that the state monad transformer applied to
any monad is a monad.

public class StateMonadTransformerApp<S, M extends Monad
<F>, F>

extends Monad<App<App<StateVal, S>, F>>

implements MonadState<S, App<App<StateVal, S>, F>> {

public StateMonadTransformerApp(M mInst) { ... }

...
}

Using the monad transformer is now straightforward.

StateMonadTransformer<Integer> trans = new
StateMonadTransformer<>();

StateMonadTransformerApp<Integer, ListMonad, List>
mStateL =

new StateMonadTransformerApp<>(new ListMonad());
List<Integer> posses = new ArrayList<>();
posses.add(2);
posses.add(3);

StateVal<Integer, List, Integer> sv =
App.appToStateVal(mStateL.bind(trans.lift(new

ListMonad(), App.listToApp(posses)), a ->
mStateL.bind(mStateL.put(a), b ->

mStateL.bind(mStateL.get(), c -> {
System.out.println(c);
return mStateL.ret(c);

}
)

)));

sv.getTransFn().apply(0);
// Prints
// 2
// 3

A.2 Proof Terms
The techniques of the previous section allow us to embed higher
kinds in Java by noting that, syntactically, they are simply trees of
type variables, which we can express in Java. Now we generalize
this idea to embed a wide array of type systems in Java.

The idea is simply. Writing all the variables in a typing rule as
XS, a typing rule takes the general form

F(XS)
----------- (inf-G)
G(XS)

where F,G : ˆType! Type is some expression containing the
variables in XS. We will transform this into a Java term: it is only
possible to construct a term of type G < XS > if we can supply a
term of type F < XS >.

public class G<XS> {
private G() {}

public static <XS> G<XS> infG(F<XS> f) {
return new G();

}
}

Note that Java allows us to create a term of any type using null.
To make this type system sound, we will need to use a nullness type
system to forbid this. [use and cite example]

For instance, the introduction rule for existential types:

Gamma, x |- F<x>

Gamma |- exists x. F<X>

can be encoded as such:

public class Exists<F> {
private Exists() {}

public static <X, F> make(Function<X, App<F,X>> f) {
return new Exists();

}
}

Here, we have only encoded the type system; it is a straigh-
forward extension to also encode the computational interpretation
of existentials, existential packages. Note also that here we have
given the presentation of existentials in a point-free style, purely in
terms of type-level functions; fully using this system requires also
encoding the rules of substitution as proof terms. Yes, that means
that using it will require you to manually construct a tree with a
node for every step of the substitution. This technique makes these
embeddings possible, not easy.

Note also above that we have removed the need to model the
environment by using Java’s environment (NOTE: say something
about higher-order abstract syntax here).

Some rules may be defined in terms of a fresh variable. We can
hijack Java’s existing universal parametricity to mandate this. For
example, consider the universal introduction rule:

Gamma, x |- F<x> x not free in Gamma

Gamma |- forall x. F<x>

We translate it as follows:

public interface ForallIntro<F> {
public <X> F<X> create();

}

public class Forall<F> {
private Forall() {}

public static Forall<F> make(ForallIntro<F> intro) {
return new Forall();

}
}

A.3 Translating Between Intrinsic and Reified Constraints
To fully interoperate with Java, it is not enough to simply have
unqualified type variables. Java allows for subclass constraints to be
placed on type variables

First, it is simple to create a piece of type-level evidence that one
type variable extends another.

public class Extends<U,V> {

private Extends() {}

public static <U extends V, V> make() {
return new Extends<U,V>();

}

public V upcast(U u) {
return (V)u;

}
}

This first-class evidence has many uses. For starters, we can
overcome the limitation in the Java type system that, while we may
require that a type variable extend multiple concrete classes and in-
terfaces, e.g.: by writing X extends Collection&Comparable,
we may only impose a single variable constraint – X extends U is
legal, but X extends U&Comparable or X extends U&V are not.
See Section 4 for a good example of using these proof terms of
subclass constraints.

What if we have a method foo that has a X extends V con-
straint, and we have a term of type Extends < U, V >? How can
we call foo at type U?

Hastily written explanation of how to do this: The user creates
a method whose signature is parameterized on < WextendsV >.
We can invoke this generically; Java will simply synthesize a
new variable of that type at the callsite because it is otherwise
unconstrained. If the result is in terms of this new variable W , we
can convert it back to being in terms of U as follows: convert it
to an App, invoke a special method which infers necessary type
equalities from a combination of Extends proof terms and built-in
Java extends constraints to perform a cast, and then convert it away
from an app.

A.4 First-class F-Bounded Polymorphism
There is one final step in creating first-class terms for Java’s type
system. Java does not merely allow type variables to have constraints
of the form U extends V; it allows F-bounds like U extends
F<U>.

Unfortunately, unlike for normal subclass constraints, it is impos-
sible to synthesize a variable with constraint X extends F<X> in
a manner which is generic in F . Here, we cannot escape Java’s
lack of higher kinds: Any such mechanism must have a fully-
applied type constructor passed in, which leaves no way to ex-
tract the variable. One attempt of ours was to parameterize a
constructor onX,G, F and require Extends < X,G > and
TypeIso < G,App < F,X >>; this fails because there is no
way to then force X to be a free parameter.

Ideally, we would like to be able to create an interface like the
following:

public interface FBoundCreator<G,F> {
public <X extends F<X>> App<G,X> create();

}

While we cannot create this interface and have it be enforced
by the Java type system because we cannot write down F < X >,
we can nonetheless create and enforce this interface by turning to
reflection. We can simply use reflection to look up the F and G
parameters on the instance of FBoundCreator, and then check
for the existence of a create method with the desired signature.
Note that, while Java execution does have type erasure, by default
type parameters of method signatures and classes are still accessible
at runtime by reflection.

The rules for F-bounded generalization and instantiation are then
simple. First, the FBound < X,F > class is type-level proof that
X extends F<X>.

public class FBound<X,F> {
private FBound() {}

public static <X,F,A> FBound<X,F> make(Extends<X, A> c,
TypeIso<A,

App<F,X>> iso) {
return new FBound();

}
}

We now define the generalization and instantiation rules:

public class FBoundedUniversal<F,T> {
private App<T,?> value;
private FBoundedUniversal(App<T,?> value) {
this.value = value;

}

public static <F,T> FBoundedUniversal<F,T>
generalize(FBoundCreator<F,T> creator) {

return new FBoundedUniversal(creator.make());
}

public <X> App<T,X> instantiate(FBound<X,F> bound) {
return (App<T,X>)value;

}
}

A.5 Further Work
We need to craft a more general story about the exact situations when
this is useful beyond the present context. I’d like to have a good
story about embedding different kinds of DSLs into Java with these
techniques. One example that comes to mind is creating typestate by
embedding it into first-order logic using a resource semantics, and
then embedding the first-order logic into Java using proof terms.

We also still need to develop its use in our current context (e.g.:
actually see through the thing about proofs of language membership)
and learn how cumbersome it is to program with these.

I also think we can develop a metaprogram which translates
nearly-arbitrary type systems into a Java encoding.

A.6 Related Work
Someone previously used the same App trick for simulating higher-
order kinds, and implemented much of the Haskell standard library
in Java: https://github.com/DanielGronau/highj

B. Monads without Lambdas
As explained previously, a critical ingredient in our ability to
modularly combine semantics, whether that’s getting analyzers to
automatically use each other’s results, or writing an eval function
in a way that’s agnostic to what kinds of effects are used in the
rest of the program, is to rely on monads to sequence operations,
and parameterize the computation by some unknown monad. Here’s
what a monadic implementation of the eval function for the SEQ
AST node, which simply runs one statement after another, might
look like in Java 8.

public <C extends EvalContext<C>> AbstractValue<C, Void>
eval(C c) {

return ctx.eval(stmt1).bind((_) ->
ctx.eval(stmt2).bind((_) ->
ctx.makeVoid()));

}

stmt1 may be a statement containing nondeterminism, contin-
uations, or indirect control flow. We may need to execute stmt2
multiple times when the rest of the program has a different state, or
we may not want to execute it at all. Or when constructing a control-
flow graph, and we need to know what the last executed statement is
when examining stmt2 so we can create a proper control-flow edge,
stmt1 may contain branches and therefore have multiple possible
“last” statements. It would seem that writing sequential statements
as nested lambdas, where each successive computation is suspended
so that the bind method is free to run it multiple times or not at all,
is necessary to achieve this modularity. In fact, this is not the case,
and we can instead write the code in the manner below so that it is
equivalent to the code above for arbitrary monads.

public <C extends EvalContext<C>> AbstractValue<C, Void>
evalSequentially(SequentialEvaluator<C> seq) {
seq.eval(stmt1);
seq.eval(stmt2);
return seq.getCtx().makeVoid();

}

At first, this might seem impossible: it appears that stmt2 is
always executed exactly once. However, note the following two
facts:

• The EvalContext invokes the eval and evalSequentially
methods of the AST node, and can choose to evaluate it 0 or
more times, and store state associated with its execution

• The SequentialEvaluatormay share state with the EvalContext
and may update the state with each call to seq.eval(). Each
call to seq.eval() may give an answer which depends on said
state, and may throw an exception to directly return control to
the EvalContext, which invoked evalSequentially.

These two facts allow the EvalContext to “observe” the be-
havior of the eval / evalSequentially method, and to control
its execution. Over the next two sections, we will present two
constructions for seq.eval such that seq.eval(s); <rest of
computation> is equivalent to ctx.eval(s).bind(() -> {
<rest of computation> }); for both the nondeterminsm and
continuation monads. These constructions both rely on having muta-
ble state and exceptions in the language. Note that we could remove
the dependence on exceptions by setting a flag to ignore the results
of the rest of the computation, and returning a dummy value to the
computation.

B.1 Lambda-free nondeterminism
The main idea of the lambda-free nondeterminism construc-
tion is that every sequence of nondeterministic choices in the
evalSequentially method determines a path through its execu-
tion. The traditional implementation of nondeterminism accumulates
a list of all choices at every branch point and then executes the re-
mainder of the execution with each possible choice. Ours instead
repeatedly executes the entire evalSequentially method, picking
a different sequence of nondeterminstic choices each time. To enable
this, it maintains a cache of the result of all subcomputations, and
uses exceptions to skip the remainder of the computation in case
it encounters a nullary choice. Note that this construction assumes
that the implementation of evalSequentially contains no side
effects.

Code for the construction is given in Figure B.1. NOTE: There
is an error in the code, in that it doesn’t depict that recursive
EVALOUTER calls occur in a new sequential evaluator with new
stack and evalledStmts state. I don’t really know how to properly
typeset this, given the impedance mismatch between the procedural
algorithmicx package and the actual object-oriented algorithm.
Similarly, it does not contain a catch block for the thrown exception.

Evaluation of a node begins in evalOuter. evalOuter initial-
izes a new intermediate-result cache for evaluating this node. It
then runs the node’s evalSequentially method in a loop. Each
evaluation explores one path through the tree of nondeterminstic
choices. It combines the results from each branch, and then returns
the collected results once the branches have been exhausted. Note
that, while our presentation below shows results being collected in
a list, we can also collect results in a different data structure such
as a set, which can collapse occasions where we received the same
result from different branches.

Within an invocation to a node’s evalSequentially method,
it may invoke the SequentialEvaluator.eval method on many
subnodes. The SequentialEvaluator.eval method first checks to
see if it has cached results for evaluating this subnode. If not, it
evaluates the subnode, caches the result, and pushes a label onto the
stack to track the order in which nodes were evaluated. It then returns
the first of the cached results to the caller, throwing an exception if
there is none.

Note: Should probably say something about how evalOuter
pops things off the stack to iterate through all branches.

B.2 Lambda-free continuations
The main idea of lambda-free continuations is, by observing the
recursive calls to SequentialEvaluator.eval, we can explicitly
maintain a stack tracing the previous returns and the position in the
code. To invoke a continuation, we simply throw an exception to

1: stack Stack()
2: evalledNodes Map()
3: function SEQUENTIALEVALUATOR.EVAL(node)
4: if not (evalledNodes contains (numBinds, node)) then
5: evalledNodes[(numBinds, node)]

EVALOUTER(node)
6: stack.push((numBinds, node))
7: end if
8: choices evalledNodes[(numBinds, node)]
9: numBinds numBinds+ 1

10: if choices is empty then
11: throw NoChoicesException
12: else
13: return choices.first()
14: end if
15: end function
16:
17: function EVALOUTER(node)
18: result []
19: repeat
20: for all 1 do r in NODE.EVALSEQUENTIALLY(this)
21: APPEND(result, r)
22: end for
23: last stack.top()
24: evalledNodes[last].removeF irst()
25: if evalledNodes[last] is empty then
26: evalledNodes.remove(last)
27: stack.pop()
28: end if
29: until stack is empty
30: end function

Figure 3. Code for the lambda-free nondeterminism construction

rewind to the beginning of the computation, replay it up to the rele-
vant callCC, and return the value passed to the continuation. Figure
B.2 gives the code for the lambda-free continuation instruction.

The construction of lambda-free continuations is similar to that
for lambda-free nondeterminism, in that it caches the result of
evaluating subnodes, and relies on re-executing the computation
for its effects. Unlike the nondeterminism construction, it does not
re-execute a computation unless a continuation is invoked, and it
re-executes the computation from the beginning, rather than from
the current node.

We begin by invoking evalTop on the root node, which im-
mediately invoke’s the node’s evalSequentially operator, which
may in turn call SequentialEvaluator.eval on its subnodes. Each
such call places an EnterFrame on the stack to record that it has
entered that node, and then calls that node’s evalSequentially
method. When the method returns, it rewinds the stack up to the
point of invocation, and places a ResultFrame on the stack to
record the result of evaluating that node.

To create a continuation, we simply copy the current state of the
stack and store it in a Continuation object. To perform a callCC,
we simply call the supplied method with the current continuation,
and return the result.

The interesting part is when we invoke a continuation. To
invoke a continuation, we throw an exception to pass control
back to evalTop along with the value passed to the computa-
tion. We then begin replaying the computation. To do this, we
copy the continuation’s stored stack into a queue, and re-evaluate
the root node. Now, whenever we encounter a recursive call to
SequentialEvaluator.eval, we take the first frame from the
queue: if it’s a ResultFrame, we return the stored result; else,

we invoke the node’s evalSequentially method. Each time, we
move a frame from the queue to the stack, reconstructing our steps.
Finally, when we exhaust the queue and reach the relevant callCC
invocation, we return the value passed to the continuation.

This algorithm could be optimized by checkpointing each re-
cursive call, so that, when we invoke a continuation, we resume
computation at the parent node, rather than at the root node.

1: stack Stack()
2: queue Queue()
3: contV al nil
4:
5: function EVALTOP(node)
6: node.evalSequentially(this)
7: catch ContinuationException(contStack, val)
8: stack Stack()
9: queue STACKTOQUEUE(contStack)

10: contV al val
11: return EVALTOP(node)
12: end function
13:
14: function SEQUENTIALEVALUATOR.EVAL(node)
15: if queue is empty then
16: PUSH(stack, EnterFrame)
17: result node.evalSequentially(this)
18: repeat
19: frame POP(stack)
20: until frame == EnterFrame
21: PUSH(stack,ResultFrame(result))
22: return result
23: else
24: nextFrame DEQUEUE(queue)
25: PUSH(stack, nextFrame)
26: if nextFrame == EnterFrame then
27: return node.evalSequentially(this)
28: else
29: (ResultFrame val) nextFrame
30: return val
31: end if
32: end if
33: end function
34:
35: function CALLCC(f)
36: if contV al 6= nil ^ queue is empty then
37: result contV al
38: contV al nil
39: queue Queue()
40: return result
41: else
42: return f(Continuation(COPY(stack)))
43: end if
44: end function
45:
46: function CALLCONTINUATION((Continuation stackCopy), val)
47: throw ContinuationException(stackCopy, val)
48: end function

Figure 4. Code for lambda-free continuation construction

B.3 Future Work
We have above given constructions for the nondeterminism and
continuation monads, and it is simple to give constructions for
the reader, writer, and state monads. It is known that arbitrary
monads can be simulated using continuations [citation]. There are

a few big threads of work remaining. First, we need to optimize
the continuation construction to resume computation from the
parent node instead of the root.Second, we need to show how
to mechanically derive the monad-without-lambda constructions
from the monad definitions and related them to the axioms of the
relevant monads.Third, we need to develop a mechanism to extend
these constructions to monad transformers. Fourth, we would like to
find exactly what conditions are needed to use these constructions
and find other applications of this technique beyond the setting of
building frameworks for language software.

Acknowledgments
I would like to thank my advisor Armando Solar-Lezama for his
constant feedback and guidance and Jean Yang for encouraging to
pursue this project when I was feeling pressure to do something with
more immediate benefits. I would also like to thank Stephen Chong,
Ziv Scully, Oleg Kiselyov, Edward Z. Yang, and my labmates in the
Computer-Aided Programming group for discussions about various
ideas in this paper.

References
[1] Patrick Bahr and Tom Hvitved. Compositional Data Types. In

Proceedings of the Seventh ACM SIGPLAN Workshop on Generic
Programming, pages 83–94. ACM, 2011.

[2] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C
Mitchell. F-Bounded Polymorphism for Object-Oriented Programming.
In Proceedings of the Fourth International Conference on Functional
Programming Languages and Computer Architecture, pages 273–280.
ACM, 1989.

[3] David Darais, Matthew Might, and David Van Horn. Galois Trans-
formers and Modular Abstract Interpreters: Reusable Metatheory for
Program Analysis. In Proceedings of the 2015 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 552–571. ACM, 2015.

[4] Michael Eichberg and Ben Hermann. A Software Product Line for
Static Analyses: The OPAL Framework. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, pages 1–6. ACM, 2014.

[5] Levent Erkök. Value Recursion in Monadic Computations. PhD thesis,
Oregon Health and Science University, 2002.

[6] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. Repair-
ing Programs with Semantic Code Search (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference
on, pages 295–306. IEEE, 2015.

[7] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim.
Automatic Patch Generation Learned from Human-Written Patches.
In Proceedings of the 2013 International Conference on Software
Engineering, pages 802–811. IEEE Press, 2013.

[8] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A Systematic Study of Automated Program Repair: Fixing 55
Out of 105 Bugs for $8 Each. In 2012 34th International Conference
on Software Engineering (ICSE), pages 3–13. IEEE, 2012.

[9] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and
modular interpreters. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
333–343. ACM, 1995.

[10] Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins,
and Michael D Ernst. Practical pluggable types for java. In Proceedings
of the 2008 international symposium on Software testing and analysis,
pages 201–212. ACM, 2008.

[11] Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard,
David Darais, Dave Clarke, and Frank Piessens. Monadic Abstract
Interpreters. In ACM SIGPLAN Notices, volume 48, pages 399–410.
ACM, 2013.

[12] Wouter Swierstra. Data Types à La Carte. Journal of Functional
Programming, 18(04):423–436, 2008.

[13] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. Soot-a Java Bytecode Optimization
Framework. In Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research, page 13. IBM Press,
1999.

