
Meta-metaprogramming

by

James Koppel
B.S. in Computer Science, Carnegie Mellon University (2012)

B.S. in Mathematics, Carnegie Mellon University (2012)
S.M. in Electrical Engineering and Computer Science,

Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 27, 2021

Certified by. .
Armando Solar-Lezama

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Meta-metaprogramming

by

James Koppel

B.S. in Computer Science, Carnegie Mellon University (2012)

B.S. in Mathematics, Carnegie Mellon University (2012)

S.M. in Electrical Engineering and Computer Science, Massachusetts

Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer Science
on August 27, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Programming languages researchers have developed many advanced tools that promise
to greatly ease software engineering. Yet even conceptually simple tools are expen-
sive to implement fully due to the complexity of the target language, and standard
techniques tie an implementation to a particular target language. In order to make
the development of advanced programming tools economical, these problems demand
new techniques for decomposing the development of tools and automating portions
of their construction, which I collectively dub “meta-metaprogramming."

In this thesis, I present three new meta-metaprogramming techniques reducing
the work needed to build programming tools, each applicable to the specific problem
of sharing implementation code between similar tools for different languages. These
techniques respectively allow a single implementation of a transformation to losslessly
rewrite code in many languages, automatically generate a family of programming tools
from a language’s semantics, and develop a new representation for sets of programs
which is applicable to a variety of languages and synthesis tasks.

Thesis Supervisor: Armando Solar-Lezama
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I remember my first conversation with Stanford’s Alex Aiken in July of 2012, where I

told him I wanted to build commercial developer tools for software maintenance, and

he warned me that no prior attempt had overcome what I now call the heterogeneity

problem. Not even a year and a half later, my program-repair startup Tarski Tech-

nologies had grown and died, and his words began to crystallize in my mind into a

new research program. With some detours, I’ve stuck to that plan unusually well in

the 8 years since. Thanks to him, and to all the others who helped me get my start: to

Claire le Goues and Ethan Fast and Jacob Steinhardt, to the many senior researchers

willing to entertain an excitable 21-year old showing up alone at conferences, and, of

course, to my incredibly kind and smart undergraduate advisor, Jonathan Aldrich.

When I think of a word to describe my advisor Armando, the first word that comes

to mind is “supportive," a quality he takes to an extreme I never thought possible.

Grad school for me had a rough start. I immediately chose a problem that was too

difficult in a field too immature, and then personal trauma left me unable to focus for

months. Armando was a rock in my life during this period. His support for me was

so unwavering that I cannot conceive of him judging a student, even subtly. I must

also thank Martin Rinard, who supported me even in the times I felt unproductive,

and continues to be among the first people I go to every time I’m shocked by a paper

rejection. I am also thankful to Caroline Uhler and Stephen Chong, who took me

in for exciting side-projects during this period. With some shame, after I regained

the ability to focus on a single project, I disappeared on them as many undergrads

have done to me. Perhaps one day I’ll go back and complete my projects with each

of them.

Beyond my advisor Armando, I am honored to have a committee composed of

people each of whom I’ve worked independently with. Spending a summer with Ira

Baxter at Semantic Designs was one of the best decisions I made in grad school.

That summer, I became a sponge for information about industrial whole-program

transformation, and gained first exposure to how much of practical use the field of

5

term rewriting had accomplished beyond the basics, techniques which form a core

part of this thesis. And because I had the pleasure of actually living with Ira, at least

one night a week we’d be up for hours talking about language engineering and tools

research. When I speak about software maintenance, I’m often asked how I know so

many stories, and the answer is usually “I got them from Ira Baxter."

As my blog and business about software design were taking off, I was truly blessed

to be sitting just a few doors down from Daniel Jackson, who was able to immediately

understand my ideas and draw connections with his vast knowledge of prior writing.

After he pitched me the problem of giving a general definition of dependence in

software engineering, we soon realized it was a problem involving counterfactuals,

which I was uniquely suited to solve because of my first year grappling with causality

in programs — that year had not been wasted after all. Sometimes life just comes

around like that.

I am thankful to my collaborators. My time collaborating with officemates Xin

Zhang and Zenna Tavares were a blast, when we’d often switch between writing and

playing surviv.io, joined sometimes in the latter by Max Nye and Evan Pu. And

among my happiest days in grad school were those spent with Michael A. Specter

reversing the “Voatz" voting app, followed by the thrill as Andrew Sellars and Daniel

Weitzner guided us in disclosing to the DHS and then the New York Times.

I would like to thank my master’s student Varot “Pond" Premtoon, who created

Yogo and in doing decisively demonstrated the advantages of Cubix for building

multi-language tools. And I would like to thank the many other undergraduates

I’ve worked with: Zoe Anderson, Jasper Haag, Angel Huang, Jackson Kearl, Diana

Molodan, Shirlyn Prabahar, Elijah Rivera, Kliment Serafimov, and Arman Talkar.

I am thankful to the many other faculty and researchers who have offered ideas

and support in ways big and small. I particularly thank Adam Chlipala, who is always

a source of biting insight, and who (re)connected me to Gabriel Scherer, who became

a mentor and then a coauthor when I dipped my feet into computational effects.

I am pleased to give another thank you to the “most thanked man in computer

science" Olivier Danvy, for inventing an entire field used as prior work for Mandate,

6

and for making my visit to Singapore truly unforgettable. And to the other faculty

who have hosted me as I toured universities: Işil Dillig, Mooly Sagiv, Eran Yahav,

Bor-Yuh Evan Chang, Sasa Misailovic, Zhiqiang Zuo, Li-Shiuan Peh, Cyrus Omar,

Jeremy Siek, Ryan Newton, Benjamin Delaware, and Ravi Chugh.

I would like to give thanks to those who were there for me as I began to broaden

my academic horizons. To Gopal Sharma, for believing in me when I was a teenager,

and then a decade later giving me my first opportunity to co-organize a workshop.

To Cody Roux for helping with the workshop and answering my StackExchange

questions. To Xiangen Hu and Andrew Olney, for their guidance as I began to

explore a distantly-related research area.

I am thankful to the MIT Educational Studies Program student group. ESP

accepted me with open arms when I arrived at MIT mid-year without realizing the

social ramifications, and has continually offered me a place at MIT that feels like

home as part of the ESPhamily, and a place to nurture my skills as a teacher. And I

am thankful to the members of MIT Gymnastics, for their constant non-judgmental

support, and for making it so that most of the flips and flops in my life were of my

own volition.

I would like to thank the other members of my lab for helping keep my life full of

programming languages: Rishabh Singh, Jean Yang, Xiaokang Qiu, Kuat Yessenov,

Zhilei Xu, Rohit Singh, Nadia Polikarpova, Shachar Itzhaky, Sicun Gao, Ivan Kuraj,

Kevin Ellis, Maxwell Nye, Jack Feser, Jeevana Priya Inala, Osbert Bastani, Nathan

Hunt, Kavi Gupta, Matthew Bowers, Leonardo Cano, and Ria Das. And I would like

to thank other members of my cohort for great times and interesting conversations:

Tej Chajed, Jiasi Shen, Sara Achour, Thomas Bourgeat, Aviv Adler, Vikas Garg, and

Jason Gross. And, outside of MIT but on a similar note, Cosmin Radoi.

Finally, I must thank those connections and companions who have been sources of

support throughout these sometimes exciting and often difficult years: Jon Paulson,

Amy Quispe, Jack Gurev, Emerson Studt, Ryan Alweiss, Nancy Hua, Melody Guan,

Josh Alman, Jessica Su, Ariel Shih, Regan Dvoskin, Xinyu Wu, and Jing Yu; my

parents Ralph and Suellen; and my sister Julie and brother-in-law Josh.

7

8

Contents

1 Introduction 25

1.1 Fundamental Challenges, Scientific Solutions 27

1.2 The Cubix Framework: One Tool, Many Languages (like Yogo) . . 33

1.3 ECTAs: Program Synthesis with Dependencies 36

1.4 Mandate: A CFG Generator Generator 39

1.5 Overview and Works Covered . 41

2 Cubix: One Tool, Many Languages 43

2.1 The Problem of Language-Parametric Tools 43

2.1.1 Why IRs Don’t Solve Multi-Language Transformation 46

2.1.2 Incremental Parametric Syntax 47

2.2 Overview . 48

2.2.1 An Elementary Hoisting Transformation 49

2.2.2 Modularizing C . 52

2.3 Core Ideas . 54

2.3.1 Background: Data Types à la Carte 55

2.3.2 Incremental Parametric Syntax 58

2.3.3 Sort Injections . 59

2.3.4 Modularizing a Syntax Definition 61

2.4 Implementation . 63

2.4.1 Languages . 64

2.4.2 Transformation Support . 67

2.4.3 Example: Implementing the Elementary Hoisting Transformation 69

9

2.4.4 Choices of Target and Implementation Languages 71

2.5 Evaluation . 75

2.5.1 A Realistic Whole-Program Refactoring 75

2.5.2 Benchmark Transformations 78

2.5.3 Correctness . 79

2.6 Readability Study . 83

2.6.1 Phase 1: Constructing the RWUS Suite 84

2.6.2 Phase 2: Obtaining Human-Written Transformations 85

2.6.3 Preparing the Samples . 85

2.6.4 Phase 3: Comparing Human and Machine-Written Transfor-

mations . 86

2.6.5 Quality Control . 88

2.6.6 Results . 88

2.6.7 Threats to Validity . 89

2.7 CFG System . 90

2.7.1 The Need for Advanced CFG Manipulation 90

2.7.2 CFG Generation: Not So Easy 93

2.7.3 Language-Modular CFG Generation 102

2.7.4 CFG-Based Program Transformation 111

2.7.5 Implementation . 117

2.8 Application: Semantic Code Search 119

2.8.1 A Run Through Yogo . 122

2.8.2 Implementation . 127

2.8.3 Evaluation . 127

2.9 Conclusion . 134

3 ECTAs: Compact Spaces of Coupled Terms 137

3.1 Overview . 141

3.2 Basic Formalism . 145

3.2.1 Preliminaries . 145

10

3.2.2 Equality-Constrained Tree Automata 146

3.2.3 Static Reduction . 149

3.3 Optimized Formalism and Implementation 150

3.3.1 Pseudo-Tree ECTAs and the Globally-Unique Recursion Re-

striction . 152

3.3.2 ECTA Operations: Union, Intersection, and Reduction 155

3.3.3 Flexible, Fast Enumeration . 158

3.4 Applications . 170

3.4.1 Hoogle+ . 170

3.4.2 Database Optimization . 170

4 Mandate: Deriving Tools from Semantics 175

4.1 Why Generate CFGs? . 175

4.2 Control-Flow Graphs for IMP . 180

4.2.1 Getting Control of the Semantics 182

4.2.2 Run Abstract Program, Get CFG 184

4.2.3 A Syntax-Directed CFG-Generator 186

4.3 From Operational Semantics to Abstract Machines 188

4.3.1 Terms and Languages . 188

4.3.2 Straightened Operational Semantics 190

4.3.3 The Phased Abstract Machine 193

4.3.4 Abstract Machines . 196

4.3.5 Splitting the SOS . 196

4.3.6 Cutting PAM . 198

4.4 Correctness . 202

4.5 Control-flow Graphs as Abstractions 204

4.5.1 Abstract Terms, Abstract Matching 205

4.5.2 Abstract Rewriting . 206

4.5.3 Machine Abstractions . 208

4.5.4 Projections . 212

11

4.5.5 Termination . 213

4.6 Syntax-Directed CFG Generators . 214

4.6.1 An Automated Termination-Prover 216

4.7 Deriving Control from a Mandate 217

4.7.1 Control-Flow Graphs for Tiger and MITScript 218

4.8 Conclusion . 223

5 Related Work 225

5.1 Modular Language Tooling . 225

5.2 Control-Flow . 227

5.3 Tools from Semantics . 229

6 Conclusion 235

A The ADT Modularization Transformation 255

B Proofs for Mandate 261

B.1 Correctness of SOS-AM Translation 261

B.1.1 SOS-PAM Correspondence . 261

B.1.2 Invertibility . 264

B.1.3 PAM-AM Correspondence . 266

B.2 Proofs of Abstract Rewriting Theorems 270

B.3 Correctness of Graph Patterns . 272

12

List of Figures

1-1 Promotional banner from Cubix website 33

1-2 (Left) Representing a C program as a mixed tree with language-specific

(light blue ellipse) and generic (purple rhombus) parts, with sort in-

jection nodes (dark blue rounded rectangle) as their glue (Right) The

conceptual interface of a “blown-down" tree presented to a language-

parametric transformation . 34

1-3 Python (a-e) and Java (f-h) variations of array frequency count . . . 37

1-4 E-PEG for i = 0; while ...: i += 1. Some nodes duplicated for clarity. 38

1-5 (a) E-graph representing the set of terms of the form 𝑓(𝑔(𝑋), 𝑔(𝑋))

where 𝑋 ∈ {𝑎, 𝑏, 𝑐} (b) ECTA for the same set. Note how the E-graph

gets no sharing benefit because it cannot represent the dependence

between the two copies of 𝑋, whereas the ECTA can. 39

1-6 A portion of a sample run of Mandate. (Top left) SOS rules for loops

and conditionals (Top right) A graph-pattern generated from these

rules, describing the control-flow of all while-loops (Bottom) Generated

CFG-generation code . 41

2-1 An example of hoisting a C program 49

2-2 Implementation of the elementary hoist transformation 50

2-3 Architecture of Cubix . 52

2-4 A term in the incremental parametric syntax for C. The ellipses (light

blue) represent language-specific nodes; rhombi (purple) represent generic

nodes; rounded rectangles (dark blue) represent sort injection nodes. . 54

13

2-5 Fragment of a typical representation of C. The solid arrows represent

the instance-of relationship; dotted represent containment. 55

2-6 Using data types à la carte to present the expression 118+1219, with

addition and constant nodes defined in separate fragments. Note how

the Add and Val fragments do not reference each other, but instead use

the type variable e, which is later filled in to contain both fragments. 57

2-7 In DLC, a language is represented by a list of subsignatures like the

one on the left. Each signature has a type variable for subterms, in

lieu of self-reference. The subsignatures are combined into a signature

for the whole language, which is then closed by specifying that allowed

subterms of terms of this signature are other terms of this signature

(right). 57

2-8 Sort injection node and its associated sort injection 60

2-9 Sort injections from Assign to BlockItem 61

2-10 Blowing down a tree . 62

2-11 Example input (left) and output (right) of comptrans. 63

2-12 Combining the fragments of Figure 2-11 63

2-13 Generic nodes to model vardecls and assignments 65

2-14 Generating the incremental parametric syntax 65

2-15 Constraints for the elementary hoist transform 68

2-16 Implementation of the elementary hoist transformation. This figure is

a repeat of Figure 2-2. 70

2-17 Input/output example of the IPT tool on C 76

2-18 Hoisting JavaScript, showing interactions with JS’s "use strict "; prag-

mas and lack of inner scopes. No JS-specific hoisting code is needed,

only a precise representation of JS blocks. 79

14

2-19 Test coverage for Java. A naive transformation would insert a test cov-

erage statement on line 5 after the while loop, causing an “unreachable

code” compile error. This case is supported purely through the CFG-

generator (by emitting a CFG in which control cannot transfer to code

after the loop’), requiring no Java-specific code in the transformation

itself. 80

2-20 TAC transformation example for JavaScript, showing handling of loops

and non-strict operators. 80

2-21 TAC transformation example for Python. It avoids computing x .foo()

when x is None, and deletes all temporaries immediately after use, as

Python is sensitive to the GC behavior. Adding the del statements is

5 lines of Python-specific code. 81

2-22 Main parts of GUI shown to human judges in the readability study. . 87

2-23 Counts of differences between the ratings of the machine transforma-

tions and the human transformations. The leftmost bars represent

cases where the judge rated the machine-produced output higher than

the human-produced. 87

2-24 Sample C input (a) and output (b) for sanitization transformation,

targeting isStopCode(s). 91

2-25 Sample Python input (a) and output (b) for sanitization-transformation,

targeting isCommand(s). 91

2-26 Variations over the array frequency count pattern in Python 120

2-27 Java variations of array frequency count 123

2-28 Example 1D bounds checks . 123

2-29 The organization of the Yogo Search Tool and its deployment. The

system admin maintains a long-term library of rules and custom types

(1), which are reused in every search session (4). Then for each search

session, the end-user provides source files (2) and search patterns (3).

The tool outputs match results to the end-user (9). 124

2-30 A search query for bounds-checking 126

15

2-31 (a): PEG for the query in Figure 2-30. (b): E-graph representing 5

programs equivalent to x >= lo && x < hi, with nodes grouped by

order of discovery. Dashed lines are between equivalent nodes. Some

nodes duplicated for clarity. 126

2-32 Yogo rule for one direction of De Morgan’s law 126

2-33 Excerpts that match SP2 (squared 2D distance). 129

2-34 Excerpts that match SP7 (iterating over a map). 129

2-35 Extracts of query for incorrect debug usage 131

2-36 Defect caught by Yogo but not custom checker. 132

2-37 Example triplets of functions fed to the equivalence-checker. 135

3-1 Compact representations of 𝒯 . The numbered DFTA nodes correspond

to the numbered e-classes. 139

3-2 E-graph for 𝒰 . 140

3-3 ECTA for 𝒰 . 142

3-4 (a) Encoding the “Any” type in Haskell as a recursive ECTA node (b)

An ECTA for all well-typed Haskell programs of the form 𝑓(𝑔), where

𝑓 and 𝑔 are drawn from a fixed set of components. 144

3-5 (a) E-graphs for the PECs {1.1 = 2.1}, {1.2 = 2.2}, and {1 = 2.1 =

2.2.1}, corresponding to the types ($) : (𝑎 → 𝑏) → (𝑎 → 𝑏) and

pairToList : 𝑎 → 𝑎 → [𝑎] (b) The congruence-closure of the e-graphs

in (a), showing that it contains the contradictory PEC {1.1 = 1 =

2.1 = 2.2.1} . 147

3-6 (a) A non-minimal ECTA representing {𝑓(𝑔(𝑏), 𝑔(𝑏)), 𝑓(ℎ(𝑏), 𝑔(𝑏)), 𝑓(ℎ(𝑐), 𝑔(𝑐))}
(b) This same ECTA after reducing the constraint 0.0 = 1.0. In par-

ticular, every leaf is used in at least one term. 151

3-7 . 157

3-8 . 160

16

3-9 The ECTA of Figure 3-4b after applying the Choose rule to the top

node and the Suspend rules to its first two children. Triangles rep-

resent Ref nodes. The arrows marked with path/variable pairs on the

app term fragment represent Unenumerated nodes. 163

3-10 The example of Figure 3-9 after fully enumerating V0. The path/vari-

able pairs on V1 and V3 indicate that the value at this variable is an

Unenumerated node. 163

3-11 . 171

4-1 . 176

4-2 Variants of control-flow graphs. Colors are for readability. 177

4-3 (Top left) SOS rules for loops and conditionals (Top right) A graph-

pattern generated from these rules, describing the control-flow of all

while-loops (Bottom) Generated CFG-generation code 179

4-4 Dataflow of our approach . 181

4-5 Syntax of IMP . 181

4-6 . 184

4-7 Universe of terms. 189

4-8 Notation for SOS . 190

4-9 The Phased Abstract Machine . 193

4-10 Abstract Machine: RHS contexts . 194

4-11 Abstract Machines . 195

4-12 The SOS-to-PAM algorithm. Labels are used in the proofs of Appendix

B.1. 197

4-13 Example PAM derivation. 199

4-14 Encoding of the AssnCong rule from Section 4.3.2 217

4-15 Starting state of MITScript programs 219

4-16 . 221

4-17 Genenerated Tiger for-loop CFG generator 221

A-1 A syntax for GADTs . 257

17

A-2 . 257

A-3 . 258

A-4 . 258

A-5 . 259

18

List of Tables

2.1 Various term types in Cubix . 71

2.2 Transformations implemented and their size. Line counts are split into

the core code of the transformation, plus the per-language code to

support language-specific operations and customization. Line counts

exclude the file prologue, i.e.: they count from the first line of code

which is not an import statement. 79

2.3 Compilers/interpreters and test suites used in evaluation 82

2.4 Results of each transformation on the test suites 83

2.5 Counts of programs where presentation to the human judges was in-

appropriate . 86

2.6 Line and token counts of CFG-generators 117

2.7 Codebases searched, and number of time-outs 128

2.8 The number of matches found for each search pattern and codebase. . 128

4.1 . 217

4.2 Example analyzers . 218

19

20

Glossary of Notation

Standard Notation

(→) A function (“arrow”) type. Also used in Chapter 4 for abstract machine transi-

tions. (Section 4.3.4)

(⇀) A partial function type. (Finite) partial functions can be thought of as associa-

tive map data structures.

[𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑘 ↦→ 𝑣𝑘] A partial function, defined [𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑘 ↦→ 𝑣𝑘](𝑥𝑖) = 𝑣𝑖.

Also called a map or environment.

𝜎[𝑥→ 𝑒] If 𝜎 is a partial function, then constructs a new (“updated”) partial function

defined 𝜎[𝑥 → 𝑒](𝑥) = 𝑒 and 𝜎[𝑦 → 𝑒](𝑥) = 𝜎(𝑦) for 𝑦 ̸= 𝑥. When 𝜎 repre-

sents an environment, this constructs a new environment updated for a variable

assignment.

P(𝑆) The powerset of 𝑆.

∅ The empty set. Also used for the empty environment (empty map).

𝜎 A metasyntactic variable used for environments/states (maps of variables to val-

ues).

𝑃 ⊢ 𝑄 Entailment. Indicates that 𝑄 may be inferred from 𝑃 by a series of logical

rules.

𝑥 : 𝜏 Denotes that 𝑥 has type 𝜏 .

[𝑣/𝑥]𝑒 The substitution of 𝑣 for 𝑥 in 𝑒, i.e.: the object constructed by taking 𝑒 and

replacing all occurrences of variable 𝑥 with 𝑣.

𝛾 Used to denote the concretization function of an abstraction relation. Used for a

specific such concretization function in Section 4.5.1.

21

̂︀· Used to denote some abstraction of the underlying object; several specific instanti-

ations in Chapter 4.

J·K The denotation of an object (of an ECTA, ECTA node or edge, etc).

::=, | Used to give BNF grammars of an inductive type.

� A hole; an empty term or context to be later filled with a value.

𝑒[𝑣] Plugs in 𝑣 for the unique hole in 𝑒.

· Denotes that the thing under the line is a list, be it a list of variables (e.g.: 𝐹𝑖) or

a list of facts or assertions (e.g.: 𝑎𝑖 < 𝑏𝑖).

𝑖𝑖.𝑖2 . . . 𝑖𝑘 (e.g.: 1.3.4.2) A path. The example denotes starting at a given node, then

descending down through child 1, then child 3, then child 4, then child 2.

𝑓
⃒⃒
𝑠
, 𝑡

⃒⃒
𝑝

The notation 𝑓
⃒⃒
𝑠
denotes the restriction of function (or partial function) 𝑓 to

the set 𝑠, where 𝑠 ⊆ dom(𝑓). 𝑡
⃒⃒
𝑝

denotes the value of term 𝑡 at path 𝑝, and is

also used in Chapter 3 for the sub-ECTA at a path. Which meaning is intended

should be clear from context.

Notation used in Chapter 3

𝒯 (Σ,𝒳) The set of terms constructible from the signature Σ and the variable set 𝒳 .

(Section 3.2.1)

𝒯 (Σ) The set of closed terms constructible from signature Σ. Equivalent to 𝒯 (Σ,∅).

(Section 3.2.1)

{𝑝1 = · · · = 𝑝𝑘} (e.g.: {1.1 = 2.1} A path constraint set (PEC) requiring that the

terms at the given paths must be equal. (Section 3.2.2)

𝑒
⃒⃒∩𝑚
𝑝

Intersection at a path: For ECTA 𝑒, constructs the ECTA given by replacing

each node at path 𝑝 with the intersection of said node and 𝑚. (Section 3.3.2)

22

Notation used in Chapter 4

mt A metasyntactic variable for a match type. The available match types are

Val,NonVal and All.

(;) A transition in the SOS (structural/“straightened” operational semantics) of a

language. (Section 4.3.2)

(↑), (↓), (↕) ↑ and ↓ are symbols denoting the “returning” and “evaluating” phase of a

phased abstract machine. ↕ (also seen with subscripts, e.g.: ↕1) is a metasyn-

tactic variable denoting either ↑ or ↓.
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕ A phased abstract machine state, where 𝑐 is the configuration, 𝐾 the con-

text, and ↕ the phase.

(→˓) A phased abstract machine transition. (Section 4.3.3)

⟨︀
𝑐
⃒⃒
𝐾
⟩︀

An abstract machine stat, where 𝑐 is the configuration and 𝐾 the context.

(Section 4.3.4)

(−→) An unfused abstract machine transition. (Section 4.3.4)

(→) A abstract machine transition. (Section 4.3.4) Also used for the standard func-

tion (“arrow”) type.

;𝑙, →˓𝑙,−→𝑙,→𝑙 The 𝑙 subscript is used when the language of the transition is un-

clear.

⋆Val, ⋆NonVal, ⋆All Abstract nodes matching all values, all non-values, and all nodes,

respectively. (Section 4.5.1)

𝛽 Metasyntactic variable reserved for a base abstraction. (Section 4.5.2)

𝛼 Metasyntactic variable reserved for a machine abstraction. (Section 4.5.3)

(̂︁→
𝛽

) The abstract reduction relation, parameterized by base abstraction 𝛽. (Section

4.5.2)

23

() The narrowing relation. (Section 4.6)

(̂︁
𝛼

) The abstract narrowing relation / narrowing on abstract terms, with machine

abstraction 𝛼. (Section 4.6, Appendix B.3)

24

Chapter 1

Introduction

The world runs on software, and any boost in the efficiency of software development

and maintenance will have an outsized downstream impact on the world. Tools re-

searchers have answered with a plethora of programming tools, each promising great

efficiency gains on their targeted tasks. Recent achievements include better techniques

for finding nontermination bugs [187] and bugs in multi-threaded programs [25], au-

tomated mitigation of hardware-based security holes [170], automatically generating

database queries [165] and accurate floating-point libraries [109], improvements in au-

tomated bug-fixing [154], and interactive evaluation of program analysis queries [158]

and choices of complex literal values [128] — and these are only from 2021 alone!

Yet in spite of the vast economic potential of making software development more

efficient and the availability of this research cornucopia to claim it, there are few

commercial programming tools available today based on program analysis, transfor-

mation, and synthesis technology. Consequently, programmer needs go unaddressed.

According to a 2010 survey by LaToza and Myers [104, 105], of the questions pro-

grammers ask during development: 34% of the time, some commercial tool existed

for that problem for some language; 25% of the time, a research tool existed; and

41% of the time, no tool existed at all. And, of course, this excludes the questions

they didn’t think to ask.

A typical tools paper today commonly presents a prototype for something less than

a full industrial language, often a just-large-enough subset of an industrial language

25

to obtain an impressive result. Conventional wisdom is that scaling these research

prototypes into a viable tool is simply a matter of adding labor. In fact, as we shall

argue, obtaining a real tool economically is not “just engineering." After solving the

research challenge of how to build some advanced programming tool at all, there are

more research challenges in how to build it effectively. There are systematic reasons

why tools of all stripes require disproportionate effort to build for the general use-case.

Here are two:

• The linguistic complexity problem: that the difficulty of building a tool

stems more from the linguistic complexity of the supported language than from

the essential complexity of the tool.

• The heterogeneity problem: that developers are split across a long tail of dis-

tinct programming languages — and current techniques make it highly difficult

to share code between similar tools for different languages.

The complex language problem increases the cost of building a tool. The hetero-

geneity problem decreases the benefits. Combined, these can decrease the ROI of the

tool to the point that it is not economical to build. Duplicating that effect across all

potential tools, and none get built. We believe these two technological barriers are

major causes of the missing market in advanced programming tools. And, unlike the

sociological and purely economic causes, these barriers can be decisively dismantled

with a technological solution.

In this thesis, we attack both these problems through techniques which permit

splitting the information of a language and tool and programming both at

a higher level. We introduce a new way of decomposing programming languages

called incremental parametric syntax, and use it in our Cubix framework to

implement program transformation tools simultaneously for 5 industrial languages.

We develop new algorithms for manipulating programming language semantics and

a new method to analyze them called abstract rewriting, and implement both in

our Mandate tool to create the world’s first control-flow graph generator generator.

Finally, we make two new contributions furthering the ability for general-purpose

26

automated-reasoning tools to solve programming problems. We create a fusion of

equality saturation and dataflow abstraction enabling a single code-search query can

match many variants of an idiom across several languages, and implement it in our

Yogo tool atop Cubix, with support for 3 languages. And we develop a new rep-

resentation called equality-constrained tree automata which can express a new

class of programming problems amenable to “constrained equational reasoning" and

solve them with a generic solver, implemented in our ecta library.

All of these are techniques which add new capabilities to how people can build

programming tools. They can be deemed part of the existing field of software language

engineering (SLE), though SLE places higher emphasis on how code is first input (e.g.:

parsing, structure editors) and on streamlining existing techniques for building tools

(e.g.: tool DSLs, language workbenches). Instead, we consider our contributions to

be part of the newly-dubbed field of meta-metaprogramming, which we define

as: techniques aimed at making program analysis (broadly: code into information),

transformation (code into code), and synthesis (information into code) tools easier to

build and more general and which substantially alter the way these tools are built.

1.1 Fundamental Challenges, Scientific Solutions

Previously, we credited the twin problems of linguistic complexity and heterogeneity

for the high cost of building tools. We now flesh out our arguments that these are

both foundational problems which merit technological solutions beyond “just trying

harder," and explain more how the meta-metaprogramming techniques in this thesis

mitigate them.

Linguistic Complexity There is no controversy that modern programming lan-

guages are very complicated. The C++ standard [159] exceeds 1000 pages. Drawing

on Brookes’s concept of accidental vs. essential complexity [22], we argue that the

complexity of building most advanced programming tools stems more from

the complexity of the language than the essential complexity of the idea

27

for the tool and that this linguistic complexity is accidental complexity , as

it is partially an artifact of conventional techniques for tool development.

Why would it not be inevitable that more complex languages need more com-

plex tools? Let us introspect on how linguistic complexity is transmuted into tool

complexity. Program analysis, transformation, and synthesis tools all require some

partial prediction about the behavior of code in order to be correct. Thence, a tool’s

complexity increases along with the number of distinct language constructs that may

affect its predictions. This manifests in low-level forms like a case statement over

a language’s syntax, and in higher-level forms like the need to consider aliasing for

languages containing certain features. We thus suggest that, to interrupt the flow of

linguistic complexity into tool complexity, one must improve the isolation and reuse

of the components that produce information about the program and those that con-

sume it. As expert can use their knowledge of a single language in multiple ways to

develop multiple tools, so too can more general tools or tool-generator use encoded

knowledge of a language in several ways.

Information about a language can be used in two ways, either exposed to a deriva-

tion or hidden behind an abstraction. Using language information derivationally

means that facts about that language are exposed in some declarative form, so that

a general tool can adapt itself to that language. Mandate does this in a major

fashion, turning a full language semantics into a tool, but so does Yogo, taking as

input both a language-general and a language-specific library of rewrite rules. Out-

side of our work, all solver-aided tools work in this manner; consider, for instance,

Pasket’s encoding of Java method resolution into SAT [84], or Cassius’s encoding of

the CSS standard [131]. Our own Ecta library is a new option for such encoding,

which we apply both to the typing rules of polymorphic function application and

the staging constraints of a database DSL. Cubix also has some small interfaces by

which a tool may directly query facts about a language, such as its treatment of short-

circuiting operators by a generic interface to get the strictness of an expression, so

that it can properly break apart expressions like f() && g() without language-specific

special treatment (see Figure 2-20). These encodings and interfaces are mostly par-

28

tial and specific to a target tool, yet they in turn could conceptually be drawn from

a comprehensive central description of the language, as Cassius is attempting with

CSS.

Information about a language can also be used by building tools against some

higher-level abstract operation which has implementations specific to each language.

The design of Cubix’s language fragments, for instance, such as the reexpression

of variable declarations into a single generic node with language-specific children,

can be seen as creating a general interface to the idea of a variable declaration. A

more direct example is its control-flow-based inserter (Section 2.7), a higher-level

rewriting primitive which uses the control semantics of a language to decide where to

put certain statements, so that one can insert a statement “before" a loop-condition,

and have it appear before the loop, at the end of the loop, and before every continue

statement. The dataflow abstractions of Yogo, in which e.g. many kinds of loops

can be translated into a higher-level “loops over a sequence" construct, can also be

seen as presenting an abstracted interface to specific language features.

Heterogeneity Even across similar languages, it is difficult-to-impossible to share

work between similar tools for different languages. (Specifically the analysis, synthe-

sis, and transformation components of these tools.) Here, it is easier to give clear

reasons: it is because of closedness and, for transformation tools, type invariance

and bidirectionalization.

A portion of a program 𝑃 is closed in some collection 𝐶 if no addition can be made

to 𝐶 without a change in 𝑃 . For example, in a rich-text editing program, any subset

of the program which enumerates or cases over the available colors would be closed

in the collection of available colors. In contrast: open sums are open because new

summands can be added without changes to either existing producers or consumers.

In the context of tools, closedness means that some part of the implementation

makes an assumption about the totality of constructs and features in the target lan-

guage. Though closed-world assumptions must often be introduced at some point

so that the tool can reason about what a language cannot do, supporting multiple

29

languages requires that as much of the implementation as possible only make assump-

tions about small portions of the target language, open to many possible extensions.

But, to the trained observer, nonessential closedness is pervasive in common ways of

implementing programming tools.

The most apparent form of closedness is in recursive traversals over a program,

which embed assumptions about a large portion of the syntax of the language, even

for operations focused only on a single corner of the syntax. The key idea permitting

operations to be written for single nodes without reference to the whole language is

to represent syntax using an unfixed data type1, a well-known technique taken to a

new extreme in Cubix. But a more subtle common expression of closedness is when

an analyzer assumes certain effects cannot occur in a given step, e.g.: that calling a

function cannot alter the local variables of the caller — readily assumed in a Java

analyzer, but false in a language with call-by-reference or unsafe memory access. We

counter this in Cubix through the aforementioned constant use of interfaces to query

facts about a language, and through a style of programming where each operation

states everything it assumes about the language it runs on. Our solution is still

imperfect, however; it cannot elegantly express assumptions about what is not in a

language, in large part due to lack of negation in Haskell’s type system.

Closedness can also be countered by shifting to an entirely different programming

paradigm. Both Mandate and Yogo take something akin to a set of rewrite rules

as input, with each rule being independently meaningful in the presence or absence of

any other set of rules. With Mandate one can freely alter the set of rules in an open

fashion, allowing Mandate to automate all code generation after closing the set of

rules, yielding a control-flow graph generator tuned to the set of possible control-flow

transitions that Mandate discovers. Yogo’s rules are similarly open, so that several

languages can share a common set of generic rules, though Yogo lacks a closed phase

where it can make decisions based on what features are not in a language.

1“Unfixing” a data type is a folkloric term for defining a data type initialy without recursion,
but then later applying an explicit type-level fixpoint operator. It is similar to writing a recursive
function explicitly with the Y Combinator. The datatypes à la carte data construction explained in
Section 2.3.1 is one way of implementing unfixed data types.

30

One important form of closedness is the type invariance of a program transfor-

mation operation. In type theory, the theory of subtyping describes when a function

can be applied to many different kinds of data. Because it is based on facts about the

assumptions made by different components of a program on their data, this theory

can be applied even in the absence of a formal type system. Program transforma-

tions traditionally have type 𝐿 → 𝐿, where 𝐿 is the type of terms in the target

programming language. This type is invariant in 𝐿, meaning that such a function

necessarily cannot be used on any restrictions or extensions of 𝐿. Or more informally:

A tool intended to consume code in a language 𝐿 only works for 𝐿 and its subset.

A tool intended to produce code in a language 𝐿 only works for 𝐿 and its super-

sets. Therefore, a tool which transforms (i.e.: both consumes and produces) code in

𝐿 only works for 𝐿 exactly, and therefore breaks for any variant of 𝐿. We discuss

invariance more in Chapter 2. Overall, this clear account helps explain why, in the

general case, source-to-source transformation is much harder than analysis or synthe-

sis alone. Cubix solves this decisively by instead giving program transformations a

parametrically polymorphic type akin to ∀𝑙.DesiredProperties(𝑙) ⇒ 𝑙 → 𝑙. Functions

of this type must be open in the language 𝑙, and may make no assumptions about it

save that it satisfied the chosen DesiredProperties.

Finally, bidirectionalization is the problem of maintaining a correspondence be-

tween two views of some artifact that can be transformed into each other. For source-

to-source transformation tools, the two views in question are the program source code

and the tool’s internal representation. Any such tool, if it is to produce output that

will be read by a human programmer, must produce code as similar as possible to

the original while still performing the intended change. Two common failures are

accidentally turning for-loops into while-loops (losing syntactic information) and un-

intentionally altering the original program’s comments and whitespace (losing lexical

information). It is again tempting to think of preserving these as another pesky engi-

neering problem to be solved by some careful tracking and extra casework within the

implementation. In fact, they are both challenging problems made far more challeng-

ing by the attempt to support multiple languages, for solving them requires “passing

31

a camel through the eye of a needle" in simplifying the input program greatly to

be easy for a tool to process, and then magically reconstituting a large amount of

information that was dropped. Cubix solves part of the problem of losing syntactic

information, by making it feasible to build multi-language tools without normalizing

many languages into some common form. But on the whole, bidirectionalization in

source-to-source transformation remains an open problem. Later, we will discuss how

our work on ECTAs was originally motivated to serve as a component in a larger idea

for solving the bidirectionalization problem.

A coordinated attack Meta-metaprogramming seeks to overcome major obsta-

cles in how programming tools are built. These challenges may be fundamental, but

solving them is possible.It should be possible to overcome linguistic complexity be-

cause all this complexity is in some way duplicated across different tools for the same

language. It should be possible to overcome heterogeneity because languages have

high similarities even as they are peppered with differences.

Though it may seem that the meta-metaprogramming techniques in this thesis are

disparate ideas, each dependent on a distinct stroke of insight extending a different

body of work, there are common themes running throughout. If these techniques are

the technology of meta-metaprogramming, then the science is in deeply understanding

how languages are defined, how algorithms for processing code are conceived, and how

tools are built.

Though different parts of this thesis draw on different fields, from type theory to

tree automata, one field stands out connecting all of them. The four projects described

in this thesis — Cubix, Yogo, Mandate, and Ecta — all draw on the theory

of rewriting in different ways. Rewriting is the source of the “sum-of-signatures"

approach and the signature/node distinction underlying Cubix’s modularity; the

mechanism used by Yogo to discover syntactically-distinct yet semantically-identical

code; the generic substrate upon which Mandate is able to describe and transform

semantics; and the target of Ecta’s representational innovations. Because so much of

the study of both languages and transformations is elegantly expressed in rewriting,

32

Figure 1-1: Promotional banner from Cubix website

we can say that rewriting is the theory of tools.

Rewriting, particularly its main subfield of term rewriting, is a well established

field, taught by textbooks such as Baader and Nipkow [7]. Concepts from term

rewriting used in this thesis include the basic theory of terms, algebras, and signa-

tures; narrowing and unification; the concept of linearity; and termination orders,

particularly the multiset order.

We now give a more detailed overview of the individual projects in this thesis.

1.2 The Cubix Framework: One Tool, Many Lan-

guages (like Yogo)

The traditional approach to building multi-language tools is to translate multiple

languages to some common intermediate representation. While this works acceptably

for static analysis and code generation tools, for source-to-source transformation, it’s a

choice between “mutilating the code" in the process of normalizing it (e.g.: turning all

for-loops into while-loops), or not normalizing at all and attaining no actual sharing.

As an alternate to IRs, there are several approaches for modular syntax, where

languages are decomposed into several fragments. However, doing so requires recon-

structing the entire language out of reusable components, and that these components

are identical across languages. As a result, previous attempts to use modular syntax

33

=

=

Block

Block

ident(”x”)

ident(”x”)

AssignIsCExpr

CStatementIsBlockItem

CLhsIsLhs

IdentIsCLhs

CExprIsRhs

CExprStmt

1

CBlockStmt

Unknown

Figure 1-2: (Left) Representing a C program as a mixed tree with language-specific
(light blue ellipse) and generic (purple rhombus) parts, with sort injection nodes
(dark blue rounded rectangle) as their glue (Right) The conceptual interface of a
“blown-down" tree presented to a language-parametric transformation

34

have only been for DSLs and toy languages,

Cubix makes modular syntax scale by adding sort injections. A sort injec-

tion is a modular component declaring one sort to be a subsort of another. Using

these, Cubix represents programs as a mixture of language-specific and generic parts.

Transformations can then be written atop the generic parts, and parameterized on

language-specific operations. Figure 1-2 depicts such a “mixed tree" and the restricted

view offered to transformations.

We have implemented support in Cubix for 5 languages: C, Java, JavaScript, Lua,

and Python. We implement 3 semantics-preserving source-to source transformations

in Cubix, and achieved a 100% pass rate on applicable compiler tests. Our “Turing

test" human study shows that code transformed by our Cubix transformations are

no less readable than code manually transformed by a human. And we created a

prototype of a transformation that Facebook and Dropbox engineers spent thousands

of hours performing manually, implemented simultaneously for all 5 languages.

On top of Cubix, we built Yogo, a semantic search tool with the world’s most

expressive matching language, as both an application of Cubix and an interesting

multi-language tool in its own right. With Yogo, one can write a single query for a

high-level operation such as an array frequency count, and match all the implementa-

tions in Figure 1-3, which includes many variations in both Python and Java. It does

this by translating these loopy programs into the purely-function program expression

graph (PEG) representation, using a declarative rule set to build an e-graph to rep-

resent an exponential number of equivalent programs, and using dataflow patterns to

recognize ever-higher-level operations. Figure 1-4 depicts Yogo recognizing that a

concrete loop is an implementation of the abstract operation of iterating through a

sequence (iterV), so that higher-level rules may be written atop it.

Yogo’s ability to handle multiple languages comes primarily from its use of declar-

ative rules, but it relies on Cubix to actually support multiple languages, as its

translator from program to PEGs is implemented in Cubix, and supports 3 lan-

guages. Though Yogo is not a source-to-source transformation tool, the primary

focus of Cubix, it nonetheless benefits in the greater ease of sharing code between

35

its support for those 3 languages.

By using Yogo to search for a buggy pattern, we were able to find a bug in a 1.2

million line codebase that had been missed by a handwritten static analyzer designed

to catch that exact kind of bug. And, showing its power beyond code search, we have

used Yogo to prune equivalent programs from a meta-learning benchmark set.

Yogo was primarily the work of Master’s student Varot Premtoon under super-

vision of this thesis’s author, and so it is given abridged coverage in this thesis.

1.3 ECTAs: Program Synthesis with Dependencies

The number of tiny programs is enormous. This is the challenge faced by enumerative

program synthesizers, which try to discover programs by searching some restricted

space.

The solution is in shared substructure. Just as a graph contains perfect informa-

tion about exponentially-many paths, there are compact data structures representing

exponentially-many programs. Just as the number of paths in a graph is easy to count,

though prohibitive to enumerate, there are facts about an entire space of programs

which are easy to compute, and can be used to select the “best" one.

Version space algebras (VSAs) [135, 107] are the most popular such data structure.

They rest on the ability to efficiently represent cross products of program spaces: if

P1, P2, and P3 are the three programs in the space which compute 𝑎, and R1, R2,

and R3 the three programs which compute 𝑏, then 𝑓◁▷({𝑃1, 𝑃2, 𝑃3}, {𝑅1, 𝑅2, 𝑅3})
is the space of 9 programs which compute 𝑓(𝑎, 𝑏) — if the P and the R can be

chosen independently. Choices of subterms are not independent in many domains,

which hinders VSAs from being used for many domains. Another more-recently-

popular data structure, e-graphs, are equivalent in expressiveness and have the same

problem. In fact, we find that they are identical to each other except in the manner

of construction, and are both identical to special cases of another such data structure,

tree automata, all of which struggle with said domains.

One such domain is in polymorphic function application. The map function has

36

count = 0
f o r a in cart :

i f a == item :
count += 1

use (count)

(a)

count = 0
f o r i in range (l en (arr)) :

i f itm != arr [i] :
cont inue

count += 1
use (count)

(b)

count = 0
f o r i in cart :

i f debug :
p r i n t (cart [i])

i f cart [i] == item :
count += 1

use (count)

(c)

count = 0
i = 0
whi le i < len (cart) :

i f cart [i] == k :
count += 1

i += 1
use (count)

(d)

use (cart . count (item))

(e)

i n t count = 0 ;
f o r (Item x : list)

i f (x == k)
count += 1 ;

use (count) ;

(f)

int count = 0;
for (i = 0; i < list.size(); i++)

if (list.get(i) == k)
count += 1;

use(count);

(g)

i n t count = Collections . frequency (list , k) ;
use (count) ;

(h)

Figure 1-3: Python (a-e) and Java (f-h) variations of array frequency count

37

𝜎0 i 0

assign

mem1

loop𝑙 i

Q 1

+i

assign

mem2

i = 0; while ...: i += 1

1

loopi
𝑙

mem1 i

Q

mem2 i

Q

2

loopi
𝑙

0

+

1

3
0 1

seq

iterV

4

Figure 1-4: E-PEG for i = 0; while ...: i += 1. Some nodes duplicated for clarity.

type ∀𝑎.(𝑎 → 𝑏) → [𝑎] → [𝑏]. The space of valid programs of the form map f l is

not given by the product of the set of available choices for 𝑓 and the set of available

choices for 𝑙.

Our solution is equality-constrained tree automata (ECTAs). ECTAs are

like ordinary tree automata (and hence VSAs), except that they may also contain

constraints that certain paths of terms in the space must have subpaths equal to

each other. This simple constraint language is nonetheless sufficient to encode many

useful spaces of programs, such as well-typed terms built out of polymorphic function

applications. We designed a fast enumeration algorithm for ECTAs, and implemented

it into our ECTA library ecta. Applying the fast enumeration algorithm to an ECTA

representing a space of well-typed terms gives a synthesizer. For the polymorphic

function domain, on some benchmarks, ecta can find all well-typed terms over 100𝑥

faster than a specialized best-in-class synthesizer, Hoogle+, can find a single term.

Our initial motivation for this work was as part of a much larger problem extend-

ing Cubix in a deeper attack against the bidirectionalization problem. With Cubix,

a source-to-source transformation need not duplicate work between the similar con-

structs across languages. But it still may need to do so for similar constructs within

a language, such as the many types of loops. This is the problem of resugaring. The

general setup of resugaring is to create desugaring rules like x += a; → x = x + a; to

38

f

g

a

g

b

g

c

f f

(a)

0.0=1.0

q1

a b c

q2

g

f

q3

(b)

Figure 1-5: (a) E-graph representing the set of terms of the form 𝑓(𝑔(𝑋), 𝑔(𝑋)) where
𝑋 ∈ {𝑎, 𝑏, 𝑐} (b) ECTA for the same set. Note how the E-graph gets no sharing benefit
because it cannot represent the dependence between the two copies of 𝑋, whereas
the ECTA can.

produce a simplified program, and to later run these rules backwards. The choices

of possible backwards rewrites create a large space of possible resugared programs,

which can then be scored for selection. We sought to use the existing technique

of version-space algebras to represent this space, but hit a barrier: version spaces

perform poorly when different subterms cannot be chosen independently, as in the

two occurrences of x in x = x + a. We suspended the resugaring project to solve this

more general problem in program synthesis, for which we devised ECTAs. Now that

we have ECTAs, finishing the original project to better solve the bidirectionalization

problem is once again viable future work.

1.4 Mandate: A CFG Generator Generator

The ultimate solution to the linguistic complexity problem would be to write down

the semantics of each programming language once, and then automatically generate

all desired tools from it. As a first step towards that dream, we developed a control-

flow-graph generator generator.

Building a CFG generator generator is interesting theoretically. For the tools that

39

have been generated from a semantics, such as an interpreter, the correspondence is

usually obvious. Yet a control-flow-graph generator looks nothing like an operational

semantics. The ability to turning semantics into a CFG generator is hence a great

milestone toward the dream of generating all tools.

But it is also interesting practically. Though CFGs are simple and usually taken

for granted, there are actually several common variants and many more uncommon

ones, based on the granularity and the attributes tracked. With a CFG generator

generator, it is easy to obtain generators for all of them. Our initial impetus for this

project came from an abandoned project in static analysis, attempting to combine

analyzers which partition a program in incompatible ways.

But first: what is a control-flow graph? It turns out that, for all the talk of “a

control-flow graph is an abstraction of control flow," CFGs have never been formally

defined with respect to program semantics. Without such a definition, one cannot

even show that a CFG-generator generator produces correct output.

We develop an executable theory of control-flow graphs from first principles, imple-

mented in our Mandate tool. We first develop an algorithm to convert a structural

operational semantics into a form with a clear notion of “current execution point"

and prove its correctness. We then introduce the technique of abstract rewriting,

applying rewrite rules to symbolic terms, and use it both to state exactly how a CFG

is an abstraction of control-flow and to convert the semantics into a CFG-generator,

overapproximating the effect of each semantic rule on the set of all possible terms.

We used Mandate to generate multiple varieties of CFG-generators each for

MITScript and Tiger, two languages used in compilers courses. On these lan-

guages, Mandate produces concise output similar to a human-written CFG-generator,

even for a looping construct with multiple layers of syntactic sugar. We then wrote

two static analyzers atop these generated CFGs, proving their utility.

40

〈
(while e do s, [� �→ �])

∣∣ k
〉

1〈
(if e then s;while e do s else skip, [� �→ �])

∣∣ k
〉

1〈
(e, [� �→ �])

∣∣ k ◦ [(if �t then s;while e do s else skip,�µ)]
〉

1〈
(�, [� �→ �])

∣∣ k ◦ [(if �t then s;while e do s else skip,�µ)]
〉

1
〈
(s;while e do s, [� �→ �])

∣∣ k
〉

1〈
(s, [� �→ �])

∣∣ k ◦ [(�t;while e do s,�µ)]
〉

1

〈
(�, [� �→ �])

∣∣ k
〉

1

〈
(�, [� �→ �])

∣∣ k ◦ [(�t;while e do s,�µ)]
〉

1

tIn

eIn

eOut

sIn

sOut

tOut

genCfg t@ (Whi le e s) = do
(t I n , tOut) <− makeInOut t
(e In , eOut) <− genCfg e
(s In , sOut) <− genCfg s
connect t I n e I n
connect eOut s I n
connect eOut tOut
connect sOut t I n
r e t u r n (t I n , tOut)

1

Figure 1-6: A portion of a sample run of Mandate. (Top left) SOS rules for loops
and conditionals (Top right) A graph-pattern generated from these rules, describing
the control-flow of all while-loops (Bottom) Generated CFG-generation code

1.5 Overview and Works Covered

Cubix is covered in Chapter 2; Yogo is covered therein as an application of Cubix.

Ecta and Mandate are covered in Chapters 3 and 4 respectively. Related work for

all chapters is collected into Chapter 5. Finally, the conclusion (Chapter 6) sums up

our thoughts on this thesis’s impact on the problems of meta-metaprogramming.

This thesis contains material previously published in the following papers and tech

reports:

• One Tool, Many Languages: Language-Parametric Transformation with Incre-

mental Parametric Syntax [96]

• One CFG-Generator to Rule them All [95]

• Multi-Language Code Search [140]

• Semantic Code Search via Equational Reasoning [141]

41

• Automatically Deriving Control-Flow Graph Generators from Operational Se-

mantics [94]

The work on equality-constrained tree-automata is currently unpublished.

These papers represent joint work with Varot Premtoon, Jackson Kearl, John K.

Feser, and Armando Solar-Lezama. Additionally, a very small portion of this thesis

was first published in “A Large-Scale Benchmark for Few-Shot Program Induction and

Synthesis" [5], joint work with Ferran Alet, Javier Lopez-Contreras, Maxwell Nye, Ar-

mando Solar-Lezama, Tomas Lozano-Perez, Leslie Kaelbling, and Josh Tenenbauhm,

42

Chapter 2

Cubix: One Tool, Many Languages

2.1 The Problem of Language-Parametric Tools

In 2014, Dropbox had a massive refactoring to do. They wanted to let users log in

with both a personal and corporate account on the same computer, but they had built

the client assuming users only had one account. To change this, they needed to pass

along information about which account each operation was for, and thread an Account

parameter through tens of thousands of functions. Many program transformation

experts could have readily built a tool for this, though it would have been a quite

expensive task for one use-case, and Dropbox opted not to hire one. And so, in

a company of over 100 engineers, the top project of the year was to tediously add

parameters to functions.

Back in 2010, Facebook had a similar problem. All sorts of privacy bugs were being

exposed by the media, like weird combinations of settings that would let someone

view another user’s private photos. Facebook assembled a crack team; they needed

this problem fixed quickly, and made to never return. The privacy checks were too

haphazard: a bunch of conditionals every place where photos may be displayed. They

needed to move these all to one place: private photos would never be fetched from the

database in the first place. To do this, they needed to add a ViewerContext parameter

to tens of thousands of functions. And so, for several weeks, every waking moment

of several dozen of their top engineers was spent adding parameters to functions.

43

One might think that a clairvoyant entrepreneur in 2010 could have built a tool

for this problem, and sold it to both Facebook and Dropbox. Alas, no, for Facebook’s

codebase was in PHP, while Dropbox’s was in Python. And, with today’s meth-

ods, building a similar program transformation tool for different languages requires

building it separately for each language.

We are not the first to notice the language-parametric transformation problem

of building a single transformation that can run on multiple languages. Intuitively,

this should be possible: languages have a lot of similarities, and humans can readily

apply the same refactoring in many different languages. The challenge then is to find

some way to capture the similarities across languages, while being flexible enough to

express their differences.

The obvious approach is to convert many languages into a single intermediate

representation. Unfortunately, doing so inevitably loses information. While this is

fine for code-generation or analysis, it fails for source-to-source transformations, which

must produce an output similar to the input. Instead, IR-based tools are known to

“mutilate” the program, such as by converting all for-loops into while-loops.

There is another line of work that promises the kind of flexible representations

needed: instead of building one representation to represent all languages, having a

different representation for each language, but letting them share common fragments.

This is the approach taken by previous work on modular syntax [9, 186], along with

its cousin work on modular interpreters [108] and modular semantics [47, 120]. In

principle, these techniques could be used to do language-parametric transformation,

but the previous work does not scale to real languages. All these approaches assume

that the entire language is built from these generic fragments. Hence, one would have

to do huge amounts of up-front work to define fragments capable of representing all

variations of each feature of modern programming languages, and assemble them into

representations for each language. The difficulty of developing language-parametric

infrastructure has meant that previous work in this space, such as the work funded

by the Dutch program on language-parametric program restructuring [98, 76], has all

been for DSLs, toy languages, and language subsets.

44

This chapter presents the first work that builds source-to-source transformations

that run on multiple real languages. Our key insight is a new representation called in-

cremental parametric syntax (IPS). In incremental parametric syntax, languages

are represented using a mixture of language-specific and generic parts. Like previ-

ous work on modular syntax, transformations deal only with the generic fragments.

Unlike previous work, the implementer starts with a pre-existing normal syntax defi-

nition, and only does enough up-front work to redefine a small fraction of a language

in terms of these generic fragments. Rather, they can incrementally convert more

of a language to generic fragments, as needed by new transformations. Best of all,

since IPSs are defined as a “diff” to an existing syntax definition, implementations

can re-use third-party language frontends.

We have implemented incremental parametric syntax in a Haskell framework called

Cubix, and implemented support for 5 languages: C, Java, JavaScript, Lua, and

Python. To evaluate Cubix, we built several program transformations that each

run on multiple of those languages. We show transformations built in this style can

have readable output, unlike IR-based approaches: our “Turing test” human study

(Section 2.6) shows their output is no less readable than hand-transformed code. In

this process, we also developed a new multi-language benchmark suite for semantics-

preserving program transformations, the RWUS (Real World, Unchanged Semantics)

suite (Section 2.6.1). We show transformations built in this style can handle language

corner-cases: the example transformations pass 100% of compiler test suites, exclud-

ing some self-referential tests that should not pass (“assert function foo is declared

on line 37”) and tests that break the third-party parsers and pretty-printers (Section

2.5.3). Finally, using Cubix, we created a prototype tool for threading variables

throughout chains of function calls (Section 2.5.1), as in Dropbox and Facebook’s

problem, and implemented it for all 5 language simultaneously (including Python,

but not yet PHP). We then used Cubix in another project, creating Yogo (Section

2.8), the world’s most advanced semantic code search tool, implemented simultane-

ously for multiple languages.

45

2.1.1 Why IRs Don’t Solve Multi-Language Transformation

An old idea for building multi-language tools is to translate each language into some

intermediate representation. This works for writing analyses and code-generators, but

is a poor fit for source-to-source transformation, which must preserve information.

Conceptually, the IR approach to analysis is to provide a family of lower functions

of type C → IR, Java → IR, etc, which transform each language into the IR, along

with an analyze function of type IR → AnalysisResult. Similarly, the IR approach

to code generation provides a term of type IR, along with lift functions of type

IR → C , IR → Java, IR → Python, etc. The natural extension to transformation is to

implement a transform function of type IR → IR, and compose it with the lower and

lift functions to get language-specific transforms of type Java → Java, C → C, etc.

But this makes a promise which is too good to be true: one can compose the lower

and lift functions to get a translation from any language to any other!

The catch is that tools that implement this approach “mutilate” the program. Most

commonly, the IR will be some kind of least common denominator of the supported

languages, seen in frameworks like SAIL [50] and BAP [24], and bytecodes such

as LLVM [106] and the JVM [110]. If the IR only supports while-loops, then any

transformation through this IR will convert all loops into while-loops, even if the

transformation has nothing to do with loops. Information about the original program

has been lost. The alternative is for the IR to be a union of all concepts of the

languages. The Clang AST, for instance, contains separate node types for both

Objective-C and C++ exception-handling. This approach essentially still requires

the user to write a transformation separately for each language: it can use the same

node to represent similar constructs in different languages only if they are exactly

identical. And, among its many other drawbacks, it still loses information about

what’s not in the program (e.g.: Java contains no pointer arithmetic, which simplifies

analysis).

The end result is: because of these problems with conventional approaches, at

time of writing, we are aware of no previous framework that allows the user to define

46

a single program transformation, run it on programs from multiple languages, and

obtain output suitable for humans.

2.1.2 Incremental Parametric Syntax

So, one-size-fits-all IRs don’t work. Our solution is to find a way to apply paramet-

ric polymorphism to program transformations. The high-level idea of incremental

parametric syntax is to build transformations with the following functions:

decompose𝐽 :: Java → Generic ◁▷ Remainder𝐽

decompose𝐶 :: C → Generic ◁▷ Remainder𝐶

transform :: ∀x . Generic ◁▷ x → Generic ◁▷ x

recompose𝐽 :: Generic ◁▷ Remainder𝐽 → Java

recompose𝐶 :: Generic ◁▷ Remainder𝐶 → C

Here, languages are decomposed into generic and language-specific parts. Then

a transformation can be run on the generic parts, while preserving the rest of the

program so that high-quality source code may be reconstructed. Unlike the common

IR approach, these type signatures guarantee that a transformation cannot modify the

language-specific parts, and the decompose and recompose functions cannot be used to

translate one language into another. And rather than construct the generic/language-

specific decomposition up-front, IPS allows a programmer to begin with a third-party

frontend for each language, and incrementally shift pieces of the language into the

generic fragment as needed for new transformations. Hence, developers can add

support for a new language in less than two days of work — and much of this time is

spent looking at the language spec to understand how to model it in terms of generic

components.

The composition 𝑋 ◁▷ 𝑌 is done using an approach known in term-rewriting as

“sum of signatures” and known in the functional-programming community as “data

types à la carte” [160]. This approach can modularly define node types and mix-and-

match them between languages, but does not let these nodes differ between languages:

it cannot use the same notion of variable declarations to model both C declarations

47

(which have types) and JavaScript ones (which do not). Similarly, in this approach,

a generic assignment node cannot be used for both C/Java (where assignments are

expressions) and in Lua/Python (where they are statements). We solve many of

these problems with the new idea of sort injections. Sort injections are deceptively

simple: just add an AssignIsExpression node to C and an AssignIsStatement node to

Python. Yet they complete sum-of-signatures by modularly specifying what edges

may be in an AST, and, in their general form, they solve many of the limitations

of sum-of-signatures. Thanks to these sort injections, Cubix can take a pre-existing

syntax definition for a language, and generate a new representation of the language

which is fully isomorphic to the original, but replaces portions of the AST with generic

nodes.

With each language expressed as an IPS, we can write a transformation param-

eterized on the nodes and sort injections it deals with. It can then be run on any

language that has these nodes and sort injections, but will give a compiler error when

used on one that does not. These transformations can be further parameterized on

language-specific operations such as symbol resolution, allowing us to build sophis-

ticated multi-language transformations that can still handle many language-specific

corner-cases.

2.2 Overview

In this section, we show how our approach allows constructing language-parametric

transformations, and the work required to add support for a new language. In Section

2.2.1, we explain the construction of a transformation called “declaration hoisting,”

and how it is configured to run on several languages. Section 2.2.2 then explains how

to create an incremental parametric syntax for C. In the language of Section 2.1.2,

Section 2.2.1 defines transform, while Section 2.2.2 defines Remainder𝐶 , decompose𝐶 , and

recompose𝐶 .

48

1 int f(int a , int b , int s) {
2 int t1 = 0, t2 = 1;
3 if (s) {
4 int r1 = t1∗a+t2∗b;
5 return r1;
6 }
7 int r2 = t2∗a+t1∗b;
8 return r2;
9 }

1 int f(int a , int b , int s) {
2 int t1, t2; int r2;
3 t1 = 0; t2 = 1;
4 if (s) {
5 int r1;
6 r1 = t1∗a+t2∗b;
7 return r1;
8 }
9 r2 = t2∗a+t1∗b;

10 return r2;
11 }

Figure 2-1: An example of hoisting a C program

2.2.1 An Elementary Hoisting Transformation

In this section, we describe the construction of a simplified transformation for decla-

ration hoisting, and how with a small amount of configuration, we can apply it to C,

Java, and JavaScript. This transformation showcases the versatility of our approach:

although it totals only 27 lines for the transformation plus 30 lines for the language-

specific code, it handles multiple language corner-cases, and achieves a high pass rate

on the compiler validation test suites. Full code for the general portion is given below

in Figure 2-2 and explained at a high level; a more detailed explanation is in Section

2.4.3.

The declaration hoisting transformation moves all variable declarations to the top

of the scope, using normal assignments to initialize them. The end result is similar

to how C89 requires programs to be written. Figure 2-1 gives an example C program

and its hoisted version. The elementary hoisting transformation of this section is a

simplified version of the hoisting transformation in our benchmarks (2.5.2), which

also supports Lua and handles shadowing. Neither supports Python because Python

lacks variable declarations.

Setting the syntactic constraints The user first writes a type signature declaring

the general syntactic constructs a language must have to use this transformation:

49

1 declToAssign :: (CanHoist f)
2 ⇒ Term f MultiVarDeclAttrsL → Term f VarDeclL → [Term f BlockItemL]
3 declToAssign mattrs (VarDecl ′ lattrs b optInit) = case optInit of

4 NoVarInit ′ → []
5 JustVarInit ′ init → [injF (Assign ′ (varDeclBinderToLhs b) AssignOpEquals ′

6 (varInitToRhs mattrs b lattrs init))]
7

8 removeInit :: (CanHoist f) ⇒ Term f VarDeclL → Term f VarDeclL

9 removeInit (VarDecl ′ a n _) = VarDecl′ a n NoVarInit ′

10

11 splitDecl :: (CanHoist f)
12 ⇒ Term f BlockItemL → ([Term f BlockItemL] , [Term f BlockItemL])
13 splitDecl (projF → (Just (MultiVarDecl ′ attrs decls)))
14 = ([injF (MultiVarDecl ′ attrs (mapF removeInit decls))]
15 , concat (map (declToAssign attrs) (extractF decls)))
16 splitDecl t = ([] , [t])
17

18 hoistBlockItems :: (CanHoist f) ⇒ [Term f BlockItemL] → [Term f BlockItemL]
19 hoistBlockItems bs = concat decls ++ concat stmts

20 where (decls, stmts) = unzip (map splitDecl bs)
21

22 elementaryHoist :: (CanHoist f) ⇒ Term f l → Term f l

23 elementaryHoist t = transform inner t

24 where
25 inner :: (CanHoist f) ⇒ Term f l → Term f l

26 inner (project → (Just (Block bs e))) = Block′ (liftF hoistBlockItems bs) e

27 inner t = t

Figure 2-2: Implementation of the elementary hoist transformation

variable declarations, assignments, blocks, and identifiers. The type signature also

requires that assignments and variable declarations must be valid members of blocks

— these are sort injections, as described in Section 2.2.2. These constraints are all

combined into the overall constraint CanHoist, as seen in Figure 2-2. We give full code

for these constraints in Section 2.4.

Language-specific operations Variable initializations and assignment RHSs can

be different. The Java array initialization code int [] x = {1,2,3}; is transformed into

x = new int []{1,2,3}; — variable initializers in Java are a strict superset of Java expres-

50

sions. C variable declarators have different abstract syntax from C lvalues. To deal

with these, the transformation takes as a parameter two language-specific operations,

varInitToRhs and varDeclBinderToLhs, invoked on lines 5 and 6 of Figure 2-2.

Writing the transformation The transformation traverses every block in the

program. At each block, it checks if each block item is a variable declaration (line 13).

If so, it splits the declaration into one without initialization, and into a sequence of

zero or more assignments (lines 14−15). The extracted assignments are inserted where

the variable declarations lay previously, while the extracted variable declarations are

prepended to the front of the block.

Dealing with language subtleties The hoisting transformation deals with several

subtleties through the language-specific operations, but we give another one here: In

JavaScript, directives such as "use strict "; must be placed at the top of a block to

have effect; hoisting something above it can break the code. Perusing the spec, we

saw directives are essentially treated as a separate kind of syntax, so we modified the

representation of JavaScript to store them separately. This is seen in the e variable

on line 26 of Figure 2-2, which stores extra data associated with a block — possible

pragmas for JavaScript, and nil for most languages. Implementing this design decision

fixed bugs in multiple transformations. More examples are given in the figures in

Section 2.5.2.

While simple, the elementary hoisting transformation in this section runs on three

languages, deals with multiple language subtleties, and has a 98.4% pass rate on

compiler test suites (compared to the 100% pass rate of the real version). Overall,

these techniques allow transformations for different languages to share code to the

extent that the two languages are syntactically similar. Later in this chapter, we give

more interesting transformations that also make use of static analysis and control-flow

information.

51

3rd-Party
Frontend

Modularized
Syntax

Incremental
Parametric

Syntax

3rd-Party
AST Def

User
Spec

Transforms

User
Spec
User
Spec
User
Spec

Code
Generation

Program
Source

AST
Modular

AST
Generic

Parts

Lang-
Specific
Parts

Trans Trans

Parser

Pretty-
Printer

Figure 2-3: Architecture of Cubix

2.2.2 Modularizing C

In Section 2.2.1, we outlined how to build a hoisting transformation which works on

any language that contains some common notion of variable declarations, assignments,

and blocks. We now show how to construct an incremental parametric syntax for C,

in which parts of the language are recast in terms of these common components.

Our approach gives a language three representations. The starting point is some

already-existing syntax definition of the language from a third-party library, with its

accompanying parser and pretty-printer. For C, we use Haskell’s language-c library

[77], which defines C’s abstract syntax as a set of mutually recursive algebraic data

types like CExpression and CAssemblyStatement. Next is the “modularized” representa-

tion, which gives the exact same set of data types, but as independent signatures

that do not reference each other. The sum of these signatures is isomorphic to the

language-c abstract syntax definition. This makes it easy to sum together a differ-

ent set of signatures, replacing some of the C-specific data types with generic ones,

yielding the third representation, the incremental parametric syntax. These three

representations are mutually isomorphic, and translations between them are derived

mostly automatically: the user only writes code for the node types which have been

supplanted by generic equivalents. Figure 2-3 depicts how the representations and

52

translations are generated, and how a program is transformed through each of them

at runtime.

Modularized representation For each algebraic data type in the C abstract syn-

tax, the user must generate a new data type representing nodes of that sort inside

an arbitrary AST (a signature for that node). Combining these give a new repre-

sentation identical to the original, but made of independent components. The user

generates these definitions completely automatically, using the Template Haskell code-

generation engine. Section 2.3.1 explains how we represent and combine signatures,

while Section 2.3.4 explains the data type transformation in more detail.

Incremental parametric syntax: Nodes The hoisting transformation is built

on general components for assignments, variable declarations, and blocks. The user

will need to replace these components of C, but no others, with their corresponding

generic components, yielding the incremental parametric syntax. This is incremental

because the user will revisit this step as more components of C need to be genericized

to support new transformations.

To genericize these components, the user first compares their definitions in the C

specification to the specification of the generic components, making sure the latter can

model the former. To customize the generic VarDecl node to C, the user must create

a new node of sort VarDeclAttrsL containing the C-specific components of a variable

declaration (type and storage specifiers, assembly name, and attributes). The user

does similarly for a couple other C constructs.

IPS: Sort injections The user now finishes customizing the generic components

to C by specifying where they fit in the C syntax. The user indicates that generic

assignments may be used as C expressions, while C expressions form the RHS of

assignments. The user does this by e.g.: generating a AssignIsCExpr node. This estab-

lishes an injection from terms of sort Assign to terms of sort CExpr, which we call a

sort injection. The user does similar to place the other generic nodes within the C

syntax. Cubix generates nodes witnessing these sort injections

53

x 1

=

AssignIsCExpr

CLhsIsLhs CExprIsRhs

CExprStmt

CBlockStmt

Figure 2-4: A term in the incremental parametric syntax for C. The ellipses (light
blue) represent language-specific nodes; rhombi (purple) represent generic nodes;
rounded rectangles (dark blue) represent sort injection nodes.

IPS: Putting it together The user now defines the incremental parametric syntax

for C by writing a couple lines of Template Haskell that takes the list of signatures in

the modularized syntax, subtracts the replaced nodes, and adds the generic compo-

nents and sort injection nodes. This code is given in Figure 2-14 in Section 2.4.1. The

sum of these signatures is the signature for the IPS for C, and the terms of this sig-

nature are given by its type-level fixpoint. These terms resemble Figure 2-4, showing

the mixture of C-specific and generic nodes, with sort injections between them.

IPS: Translations The user writes instances of the trans and untrans operators

between the nodes that have been removed from C, and the generic ones that replaced

them. Generic programming deals with the nodes shared between the IPS and the

modularized syntax, giving translation functions between the two representations.

Our actual implementation of these translations for C totals 130 lines of Haskell

code, about 40 of which are boilerplate.

2.3 Core Ideas

In this section, we explain the core new ideas that make our language-parametric

transformations possible. Section 2.3.1 gives background on modular syntax, used in

the rest of this section. Section 2.3.2 presents the terminology and goals of incremental

54

While

CStmt

If

CExpr

Figure 2-5: Fragment of a typical representation of C. The solid arrows represent the
instance-of relationship; dotted represent containment.

parametric syntax. We achieve this through the concepts in the following sections:

Section 2.3.3 presents sort injections, and Section 2.3.4 explains the translation of a

syntax into its modularized version.

2.3.1 Background: Data Types à la Carte

The basic idea of modular syntax is simple: languages should be defined by a set of

nodes, and the same node can appear in many languages. So, a transformation to

swap the two branches of an if-statement should be runnable on any language with

if-statements.

Unfortunately, in common representations of syntax, whether as an algebraic data

type (ADT) like the fragment in Figure 2-5, or as a set of classes, this is not possible.

The problem is mutual recursion between types. A C if-statement contains C expres-

sions, which can contain C statements. So, the node for C if-statements is tied to

definitions for all other C statements. The structure of code follows the structure of

data, and so a traversal written over this type will also be coupled to all C statements.

Even without the mutual recursion, trouble arises as soon as one uses a fixed type

like 𝐶 → 𝐶 or Java → Java for a program transformation. The reason goes back to

the basic theory of subtyping. Producer functions of type 𝐴 → 𝐶 are covariant in

𝐶, meaning new cases can be added to 𝐶 without changing the function. Consumer

functions of type 𝐶 → 𝐴 are contravariant in 𝐶, meaning cases can be removed

55

from 𝐶 without changing the function. But functions of type 𝐶 → 𝐶 are invariant,

meaning the code will break if any cases are added or removed from the language.

Techniques such as the visitor pattern can help, but introduce new limitations (dis-

cussed by [100]), and do not allow for a multi-language transformation so long as the

types are tied together. Switching to a dynamically-typed language also does not

help; removing the types does not remove constraints over the data.

What does help is removing the recursion from the syntax definitions, and using

parametric polymorphism for the types. Mathematically, an ADT is defined in three

stages: first, data is tupled into a constructor; then many constructors are summed

into a signature, a list of node types with unspecified children; and then a fixpoint is

taken over the signature, yielding recursive trees. The idea of the sum-of-signatures

representation, known in the functional programming community as data types à

la carte (DLC) [160], is to defer the fixpoint operation. The programmer instead

programs against signatures, which are not recursive, and can be modularly combined.

In DLC, a signature takes the form of a data type similar to conventional abstract

syntax, but where all recursive terms have been replaced with a type variable, so

that the type of children may be specified later. Each signature may represent an

independent fragment of a language; these signatures may be freely summed into a

signature for an entire language, and then closed recursively, as depicted in Figure

2-7. Figure 2-6 shows an example of a term written in DLC, taken from [160].

Data types à la carte generalizes easily to multiple sorts: have a type variable for

terms of sort Stmt, another for terms of sort Exp, etc. This unfortunately makes it

difficult to add new sorts, or to have languages with different numbers of sorts. The

insight of [185] is to merge these into a single higher-order type variable 𝑡. Subscripting

𝑡 with various labels gives the type of terms of a certain sort: 𝑡Stmt represents terms

of sort Stmt, 𝑡Exp represents terms of sort Exp, etc. But t itself is a single variable,

representing terms of all sorts. Figure 2-11 shows signatures following this pattern.

56

1 data Add e = Add e e

2 data Val e = Val Int

3 data (f : + : g) e = Inl (f e) | Inr (g e)
4 data Term f = Term (f (Term f))
5

6 type ExpSig = Add : + : Const

7 type Exp = Term ExpSig

8

9 addExample :: Exp

10 addExample = Term (Inl (Add (Term (Inr (Val 118))) (Term (Inr (Val 1219)))))

Figure 2-6: Using data types à la carte to present the expression 118+1219, with
addition and constant nodes defined in separate fragments. Note how the Add and Val

fragments do not reference each other, but instead use the type variable e, which is
later filled in to contain both fragments.

+
t

t

+
t

+
t

While

CStmt

If

tExpr tStmt

t

Figure 2-7: In DLC, a language is represented by a list of subsignatures like the one
on the left. Each signature has a type variable for subterms, in lieu of self-reference.
The subsignatures are combined into a signature for the whole language, which is
then closed by specifying that allowed subterms of terms of this signature are other
terms of this signature (right).

57

2.3.2 Incremental Parametric Syntax

As explained above, functions of type 𝐶 → 𝐶 have a type which is invariant in 𝐶.

That is, in general, the code for any function that consumes and produces a value

of type 𝐶 will break when the definition of 𝐶 is modified. So, instead of using a

fixed type, the way to write a function that can transform many data types is with

parametric polymorphism. For instance, the sort function of type ∀𝑥.Ord x⇒ [𝑥]→
[𝑥] works over lists of any data type that supports comparison, and, after inlining, is

just as efficient as a sort function written for each data type. Our goal is to bring

this combination of generality and specialization to program transformation.

Let 𝐹1, . . . , 𝐹𝑛 be fragments that may be contained in many languages (i.e.: generic

parts of languages). We define a parametric syntax 𝒮 for a language as any repre-

sentation that supports an operation ≺ such that a transformation over any language

containing 𝐹𝑖 may be written ∀𝑥.𝐹𝑖 ≺ 𝑥 ⇒ 𝑥 → 𝑥. This gives a name to previous

work: any language written in DLC is a parametric syntax.

But the drawback of previous incarnations of DLC and other forms of modular

syntax is that language definitions in those styles are what we term a fully para-

metric syntax, meaning that the syntax must be written entirely in terms of generic

fragments.

More formally, a fully parametric syntax is any representation satisfying:

1. There is some combination operator ◁▷ which merges fragments. The ◁▷ op-

eration must satisfy the property: if 𝐹 ≺ 𝐺 or 𝐹 ≺ 𝐻, then 𝐹 ≺ (𝐺 ◁▷ 𝐻)

.

2. Each syntax definition is built entirely by combining generic fragments. That

is, 𝒮 is a fully-parametric syntax if it can be written 𝒮 .
= 𝐺1 ◁▷ . . . ◁▷ 𝐺𝑚, where

each 𝐺𝑖 ∈ {𝐹1, . . . , 𝐹𝑛}.

Defining a fully parametric syntax for a language requires a large amount of up-

front labor. Incremental parametric syntax lowers this initial barrier.

58

We say that 𝒮 is an incremental parametric syntax if there is a non-parametric

syntax 𝒯 and a “fragment removal” operator ∖ such that 𝒮 may be expressed:

𝒮 .
= (𝒯 ∖ 𝐹1 ∖ · · · ∖ 𝐹𝑚) ◁▷ 𝐺1 ◁▷ . . . ◁▷ 𝐺𝑛

An incremental parametric syntax allows the user to start with a pre-existing

syntax definition, replace some components with their generic equivalents, and then

write transformations against the generic components. Given the complexity of a

production language, this approach is necessary for getting a language-parametric

transformation running on real languages in a reasonable amount of time.

In our instantiation of incremental parametric syntax, we use the signature sub-

sumption and sums from data types à la carte to provide the fragment subsumption

(≺) and ◁▷ operators. We use new ideas for the ∖ operator: convert the existing syn-

tax into a sum of language-specific signatures (Section 2.3.4), and then use signature

subtraction. Additionally, to add generic fragments, one must also add new nodes to

reshape the grammar to accept them (Section 2.3.3),

Parametric syntax closely relates to the Expression Problem [176], which concerns

being able to separately extend a language with new terms and new operations.

Any incremental parametric syntax is also a solution to the Expression Problem, as

it allows a language to be extended with new terms and operations. However, a

solution to the Expression Problem need not allow for expressing multiple languages.

As parametric syntax is our name for a family of existing approaches, discussion of

how parametric syntax solves the Expression Problem can be found in the DLC paper

[160].

2.3.3 Sort Injections

Using data types à la carte, one can modularly specify which nodes may be in a

language, and replace them with generic ones. However, similar nodes in different

languages may interact differently with the rest of the language. Assignments are

expressions in C/Java and statements in Lua/Python. Most languages have various

59

1 data AssignIsCExpr t l where
2 AssignIsCExpr :: t AssignL → AssignIsCExpr t CExprL

3

4 instance (AssignIsCExpr ≺f) ⇒ InjF (Term f) AssignL CExprL where
5 injF = AssignIsCExpr

6 projF x = case project x of

7 Just (AssignIsCExpr x) → Just x

8 _ → Nothing

Figure 2-8: Sort injection node and its associated sort injection

assignment operators like +=, but Lua does not. Rarely will a generic node be an

exact fit for a construct already in a language. Instead, it must be customized for

that language.

We solve this with sort injections. A sort injection from A to B is an injective

function from terms of sort A to terms of sort B, together with its partial inverse.

C and Java have a sort injection from Assign to CExpr and JavaExpr respectively, while

Lua and Python have ones from Assign to their respective statement sorts. And all

languages except Lua have a sort-injection from their respective language-specific

assignment-operation sorts to the generic assignment-operation sort.

The most straightforward way to provide such a sort injection is via a sort in-

jection node, an unary production of sort B with a single child of sort A. Figure 2-8

gives an example sort injection and node from generic assignments to C expressions.

So, while DLC modularizes which nodes may be in a languages, sort-injections

modularize the edges. Adding the AssignIsCExpr node from Figure 2-8 to a syntax

definition is equivalent to allowing a parent-child edge from anything that contains C

expressions to assignments.

Sort injections also serve an additional purpose: abstracting over intermediate

nodes. In all supported languages, assignments may be used as top-level items in

blocks. However, this occurs through a chain of language-specific nodes. Block

statements in C may not be assignments directly, but they can be ordinary state-

60

BlockItem

CBlockStmt

CStmt

CExpr

Assign

BlockItem

Assign

BlockItem

JSStmt

Assign

JSExprStmt Assign

. . .

Figure 2-9: Sort injections from Assign to BlockItem

ments, which may be expression statements, which may be assignments. And, in the

third-party JavaScript frontend used by Cubix, there are actually two (semantically-

equivalent) ways that assignments may be statements. All this can be abstracted into

the constraint: there is a sort injection from assignments to block items. Figure 2-9

illustrates this example.

In a transformation such as Hoist that works on languages with a sort injection

from assignments to block items, the transformation has the ability to place assign-

ments into blocks, and to check if a block item is an assignment. So one can think

of this transformation as working not on the original tree but on a “blown-down”

tree, which only contains these generic nodes. Figure 2-10 shows an example of a

blown-down tree. This is similar to the theory views seen in Maude [31], and to the

homeomorphic embedding in term rewriting [7].

2.3.4 Modularizing a Syntax Definition

The preceding sections gave some of the techniques of incremental parametric syn-

tax; we now show how to convert an existing syntax definition so that it can be

incrementally generalized. The key idea is to transform an existing syntax definition

𝒯 into the combination 𝐹1 ◁▷ . . . ◁▷ 𝐹𝑚. This provides the final component of incre-

mental parametric syntax, as 𝒯 ∖ 𝐹𝑖 can be defined by simply removing 𝐹𝑖 from the

combination.

The ADT modularization transformation is most easily explained by an example:

61

=

=

Block

Block

ident(”x”)

ident(”x”)

AssignIsCExpr

CStatementIsBlockItem

CLhsIsLhs

IdentIsCLhs

CExprIsRhs

CExprStmt

1

CBlockStmt

Unknown

Figure 2-10: Blowing down a tree

it transforms the ADTs on the left side of Figure 2-11 into the generalized algebraic

data types (GADTs) on the right. The GADTs stand independently, with no recursion

between them. Instead of a recursive reference to the Arith type, for example, the type

t ArithL can be read “Terms of sort ArithL, which will be specified later.” But when

those terms are specified, and the independent types are combined back together, the

result type Term (Arith : + : Atom : + : Lit) ArithL is isomorphic to Arith. Figure 2-12

shows how these types are combined.

In our instantiation of incremental parametric syntax, this means converting a

syntax definition into DLC. For syntax definitions given as mutually recursive alge-

braic data types, this is quite easy to do. The recursive knot is already tied in a

separate step in the metatheory; the ADT modularization transformation just puts

that in code as well.

The transformation generalizes easily from this example. We give a full formal

definition in Appendix A, and implement it in our comptrans tool.

62

1 data Arith = Add Atom Atom

2

3 data Atom = Var String

4 | Const Lit

5 | Parens Arith

6

7 data Lit = Lit Int

1 data ArithL

2 data AtomL

3 data LitL

4

5 data Arith t l where
6 Add :: t AtomL → t AtomL

7 → Arith t ArithL

8 data Atom t l where
9 Var :: String → Atom t AtomL

10 Const :: t LitL → Atom t AtomL

11 Parens :: t ArithL → Atom t AtomL

12 data Lit (t :: ∗ → ∗) l where
13 Lit :: Int → Lit t LitL

Figure 2-11: Example input (left) and output (right) of comptrans.

1 data (:+:) f g t l = Inl (f t l) | Inr (g t l)
2 data Term f l = Term (f (Term f)) l

3 type LangSig = Arith :+: Atom :+: Lit

4 type LangTerm = Term LangSig

Figure 2-12: Combining the fragments of Figure 2-11

The modularized representation has several other benefits, even when writing

transformations for only one language. For instance, a sort-preserving rewrite that

can be applied to to terms of any sort can be given type Term Sig l → Term Sig l, and

it also enables many generic-programming techniques. See Bahr and Hvitved [9] for

a full discussion.

2.4 Implementation

We have implemented our approach in the Cubix system, named for a fictional robot

composed of modular parts that can be reassembled for many purposes. Cubix is

organized as a collection of libraries which assist in building incremental parametric

63

syntaxes and language-parametric transformations. Our implementation totals ap-

proximately 29, 000 lines of Haskell, providing support for five languages and several

transformations. We build heavily on our own fork of Bahr and Hvitved’s compdata

library [9] for modular syntax, and extend it with support for sort injections and the

comptrans library for converting a third-party syntax definition into modular syntax.

We provide generic language components, and modules for labeled terms, control-flow

graphs, and higher-order tree traversals.

The code is split between approximately 5400 lines in our language implementa-

tions, 2300 in our transformations, 3400 in our general multi-language machinery and

generic language fragments, 1100 in comptrans, 5000 in our fork of compdata, 4000 in

our tests, 3900 in our other libraries, and the rest in our driver, miscellaneous code,

and minor extensions to third-party libraries. Note that our language implementa-

tions do contain a lot of code clones, due to the limits of metaprogramming in Haskell.

Cubix as presented in the original paper [96] only contained 13, 000 lines; the chief

edition since then are the tests and the inclusion of the fork of compdata.

The rest of this section discusses Cubix in more detail. Section 2.4.1 describes

implementing an IPS in Cubix. Section 2.4.2 describes how to implement transforma-

tions, and Section 2.4.3 gives example code. Section 2.4.4 discusses how to generalize

Cubix beyond Haskell and the 5 target languages.

Cubix’s treatment of control-flow graphs is sufficiently interesting that it merits

its own section, Section 2.7.1

2.4.1 Languages

As shown in Figure 2-3, to add support for a language, the users selects a third-party

frontend, and then constructs two derived representations.

Creating the modularized syntax There are three steps to creating the mod-

ularized syntax. Because the modularized syntax is identical to the original, but in

a different form, the user only need enter a few boilerplate commands in Template

Haskell, and then this representation is generated automatically.

64

1 data MultiVarDeclAttrsL

2 data VarInitL

3 data MultiVarDeclL

4

5 data OptVarInitL

6 data VarDeclAttrsL

7 data VarDeclL

8 data AssignOpL

9 data AssignL

10 data LhsL

11 data RhsL

12

13 data OptVarInit t l where
14 JustVarInit :: t VarInitL → OptVarInit t OptLocalVarInitL

15 NoVarInit :: OptVarInit t OptVarInitL

16

17 data VarDecl t l where
18 VarDecl :: t VarDeclAttrsL → t VarDeclBinderL

19 → t OptVarInitL → VarDecl t VarDeclL

20

21 data MultiVarDecl t l where
22 MultiVarDecl :: t MultiVarDeclAttrsL → t [VarDeclL]
23 → MultiVarDecl t MultiVarDeclL

24

25 data Assign t l where
26 Assign :: t LhsL → t AssignOpL → t RhsL → Assign t AssignL

Figure 2-13: Generic nodes to model vardecls and assignments

1 do let cSortInjections = [’ ’CExprIsRhs, ’ ’AssignIsCExpr, . . .]
2 let names = (cSigNames \\ [mkName "Ident", . . .])
3 ++ cSortInjections ++ [’’VarDecl, ’’P . Ident, ’ ’Assign, . . .]
4 runCompTrans (makeSumType "MCSig" names)

Figure 2-14: Generating the incremental parametric syntax

65

First, for each algebraic data type in the original AST, the user must create a

language fragment signature similar to the one in Figure 2-11. comptrans generates this

code automatically using Haskell’s compile-time code-generation engine, Template

Haskell [155]. For instance, the command to do this for C is

runCompTrans (deriveMultiComp ’ ’CTranslationUnit)

as CTranslationUnit is the root of the C type.

Second, the user sums these language fragments into a signature for the language.

For C, the command is runCompTrans (makeSumType "CSig" cSigNames). After this com-

mand has been executed, the user may now manually declare types in terms of CSig,

such as the type of C terms type CTerm = Term CSig, and the signature of labeled C

terms type CSigLab = CSig :&: Label.

Finally, another command is used to generate the translations between the repre-

sentation of language−c and the modularized representation.

Designing a Library of Generic Components Designing a generic language

component takes serious thought: it must be possible to instantiate it in a way that

models the corresponding construct in every language under consideration.

These come in the form of (completely-standalone) manually-written signatures.

Figure 2-13 shows Cubix’s definitions for generic variable declarations and assign-

ments, which we designed to model the corresponding language constructs in C,

Java, JavaScript, Lua, and Python. The empty data declarations like data LhsL de-

note sorts, while the others are generic nodes. This component comes with many

knobs. By providing C-specific nodes of sort VarDeclAttrsL and MultiVarDeclAttrsL, it

can model declarations like const int x = 1, ∗y;. By providing empty nodes of those

sorts, it can model Lua and JavaScript variable declarations.

Creating the IPS The user must now decide how to instantiate the generic com-

ponents in Figure 2-13 to model their language-specific counterparts. For instance,

in C, assignments are expressions, and expressions are assignment right-hand sides.

66

The user specifies this by generating a sort injection from AssignL to CExprL and from

CExprL to RhsL, and does similar for LhsL and AssignOpL.

The user is now ready to define the IPS for the language. This is done by ex-

pressing the old signature as a compile-time list of symbols, and literallly removing

the language-specific components and adding the generic ones. Figure 2-14 gives the

code used to generate the IPS C signature, MCSig.

Finally, the user must write a translation from the modularized syntax to the IPS.

They need only write code for the cases where the syntaxes differ, i.e.: to replace

language-specific nodes with generic ones.

This completes the process depicted in Figure 2-3.

Other support Some transformations may require other language-infrastructure,

such as a control-flow graph generator. The IPS representation makes it easy to share

code across languages; our 5 CFG-generators, described in more detail in Section 2.7.1,

average 122 LOC.

In our experience, creating an incremental parametric syntax for a new language

takes 1-2 days. We have implemented support for C, Java, JavaScript, Lua, and

Python, using the parsers, pretty-printers, and syntax definitions from the Haskell

libraries language-c [77], language-java [21], language-javascript [188], language-lua

[129], and lastly language-python [138]. Because of problems with the parser included

in language-java, we instead use a Java parser written in Java, the javaparser.org

parser [166], and translate its results into the language-java AST. Despite their names,

these libraries were all implemented independently by different authors, and share no

common infrastructure beyond standard libraries. We fixed bugs in all of their pretty

printers but were otherwise not involved with their development. Some of our fixes

have yet to be merged upstream.

2.4.2 Transformation Support

A language-parametric transformation makes limited assumptions about its target

language. This is done by parameterizing the transformation over operations on the

67

javaparser.org

1 type HasSyntax f =
2 (VarDecl ≺ f, MultiVarDecl ≺ f

3 , OptVarInit ≺ f, Ident ≺ f, Assign ≺ f, AssignOpEquals ≺ f

4 , Block ≺f , ListF ≺ f, ExtractF [] (Term f))
5

6 type CanHoist f =
7 (HasSyntax f , VarInitToRhs (Term f)
8 , VarDeclBinderToLhs (Term f), HTraversable f

9 , InjF f MultiVarDeclL BlockItemL, InjF f AssignL BlockItemL)

Figure 2-15: Constraints for the elementary hoist transform

nodes and terms of the language, given in the form of Haskell typeclasses.

The constraints for the elementary hoisting transformation, CanHoist in Figure

2-15, depicts the full spectrum of such operations. The elementary hoisting transfor-

mation can run on any language that satisfies these constraints, and gives a compile

error on any that do not. First, there are constraints that the language contain generic

nodes. This is given as the ≺ constraint from compdata, which provides an injective

function from the generic node to terms of the language, inject, and its partial in-

verse, project. As a second class, the InjF constraints are sort injections as discussed

in Section 2.3.3. Finally, VarDeclBinderToLhs and VarInitToRhs provide the language-

specific operations of elementary hoisting, discussed in Section 2.2.1. Overall, these

constraints allow a transformation to make a limited set of assumptions about its

target languages, allowing it to handle the intricate details of many languages while

maintaining a high level of generality.

There are also a couple more technical constraints. The interface HTraversable from

compdata interface offers generic tree-traversal operations. MaybeF and ListF provide tree

nodes representing optional nodes and lists of nodes, so a node representing a list of

block items may have sort [BlockItemL]. There are then operations extractF and insertF

to convert between values of type Term f [l] (term of sort “list of l”) and values of

type [Term f l] (list of terms of sort l).

We have built a library of strategy combinators [101] called compstrat. With

68

strategy combinators, the user can turn a set of single-node rewrites into a complicated

traversal pattern in a single line of code. compstrat provides similar functionality to

other strategy combinator libraries such as Scrap Your Boilerplate [99], Strafunski

[102], and KURE [65].

We have also built miscellaneous other infrastructure to support our transforma-

tions. The most interesting of these is the control-flow based inserter, explained fully

in Section 2.7.4. In brief: inserting a statement before a loop condition causes it

to be placed before the loop, before the end of the loop, and before every continuet

statement.

2.4.3 Example: Implementing the Elementary Hoisting Trans-

formation

This section presents and explains the full implementation of the elementary hoisting

transformation first described in Section 2.2.1. Figure 2-16 gives the code; Figure

2-15 showed the CanHoist constraint. We omit the 30 lines of code giving the three

language-specific instances of VarInitToRhs and VarDeclBinderToLhs.

The code implements the algorithm described in Section 2.2.1. Execution begins

at elementaryHoist, which runs hoistBlockItems over every block. It does so by using

compdata’s transform function to run inner over every node, which uses project to test

if a node is a block. Later, the sort injections are used via projF and injF to operate

on the subset of BlockItem’s that the transformation knows about.

In this example, we have tried to avoid many of the vagaries of Haskell syntax as

well as more advanced features of Cubix. Nonetheless, some advanced features are

present. The sum-of-signatures approach distinguishes between nodes, which may lie

in an arbitrary AST, and terms, which are tied to a single language. The vanilla data

constructors of Figure 2-13 like Assign construct nodes of a signature fragment, while

their primed variants like Assign ′ construct and pattern match on terms. We explained

the extractF and insertF functions in Section 2.4.2; these are used to implement the

liftF and mapF functions, which are used to operate on trees of type Term f [l]. Finally,

69

1 declToAssign :: (CanHoist f)
2 ⇒ Term f MultiVarDeclAttrsL → Term f VarDeclL → [Term f BlockItemL]
3 declToAssign mattrs (VarDecl ′ lattrs b optInit) = case optInit of

4 NoVarInit ′ → []
5 JustVarInit ′ init → [injF (Assign ′ (varDeclBinderToLhs b) AssignOpEquals ′

6 (varInitToRhs mattrs b lattrs init))]
7

8 removeInit :: (CanHoist f) ⇒ Term f VarDeclL → Term f VarDeclL

9 removeInit (VarDecl ′ a n _) = VarDecl′ a n NoVarInit ′

10

11 splitDecl :: (CanHoist f)
12 ⇒ Term f BlockItemL → ([Term f BlockItemL] , [Term f BlockItemL])
13 splitDecl (projF → (Just (MultiVarDecl ′ attrs decls)))
14 = ([injF (MultiVarDecl ′ attrs (mapF removeInit decls))]
15 , concat (map (declToAssign attrs) (extractF decls)))
16 splitDecl t = ([] , [t])
17

18 hoistBlockItems :: (CanHoist f) ⇒ [Term f BlockItemL] → [Term f BlockItemL]
19 hoistBlockItems bs = concat decls ++ concat stmts

20 where (decls, stmts) = unzip (map splitDecl bs)
21

22 elementaryHoist :: (CanHoist f) ⇒ Term f l → Term f l

23 elementaryHoist t = transform inner t

24 where
25 inner :: (CanHoist f) ⇒ Term f l → Term f l

26 inner (project → (Just (Block bs e))) = Block′ (liftF hoistBlockItems bs) e

27 inner t = t

Figure 2-16: Implementation of the elementary hoist transformation. This figure is a
repeat of Figure 2-2.

70

Table 2.1: Various term types in Cubix

Type signature Description
Term f AssignL Assignments in any language
Term MJavaSig l Java terms of any sort

(Assign ≺f) ⇒ Term f IdentL
An identifier in any language that contains
generic assignments

Term f (StatSort f)
A statement in any language. The statement
sort is language-specific.

(InjF f IdentL PositionalArgExpL

, CallAnalysis f) ⇒ Term f IdentL

An identifier in any language which supports a
call analysis, and where identifiers may be used
as ordinary arguments to functions

the syntax f (view → Just x) = . . . is a Haskell view pattern [175] which is syntactic

sugar for f t = case view t of Just x → . . . , with pattern match failure proceeding to

the next case.

2.4.4 Choices of Target and Implementation Languages

When we speak about Cubix, we always find people who want to use it or something

like it for their applications. What would it take to implement a system like Cubix

in a different language? And what about supporting other languages, such as ML or

Prolog or Haskell itself?

What do we gain from these fancy types? Cubix’s implementation of incre-

mental parametric syntax uses some rather advanced type system features. Case in

point: the current implementation uses over 30 GHC extensions. What’s the benefit

of all this, and can it be replicated in a language other than Haskell?

There are two primary benefits. The first is the precise typing. The second is dis-

patch: the compiler uses the type information to choose appropriate language-specific

and sort-specific operations. Both are indispensible for building multi-language tools.

And their synthesis allows generic programming.

Consider the example types in Table 2.1. They show how, using the Term f l type,

developers can restrict operations to certain sorts of terms, languages, and properties

71

of the language. These restrictions are all enforced by the compiler.

Without these types, it’s still quite easy to write a function that can accept many

kinds of terms, by giving them all a single “Node” type. This is the dynamically-

typed or “generic node” approach, used in many language workbenches. This is not

enough to get language-parametric transformation, as removing the types does not

remove the network of constraints between AST nodes. There must be the extra

step of converting part of the tree to some common form, as done in IPS. And these

conversions introduce massive room for errors.

Our own experience attempting this kind of generic programing in JavaScript, as

well as fixing type errors during normal Cubix development, makes us pessimistic

about trying it without precise types. It’s far too easy to e.g.: attempt to use an

assignment as an expression, when that is not legal in every language.

The second major benefit is dispatch. Consider writing a transformation that

works on any language where functions can be turned into lambdas. If we were to

implement this transformation in a language without typeclasses, we would make

the transformation take a “turn function into lambda” operation as a parameter.

This operation would then need to be transitively supplied to every piece of the

transformation that needed it.

Conversely, in Haskell, we’d simply add a condition to the constraints for the

transformation, as in Figure 2-15, and it would be propagated to all components.

And when attempting to call this transformation on a specific language, the compiler

will automatically find and supply the correct instance of the “turn function into

lambda” operation.

In other words, it is very easy to write a generic operation that includes language-

specific pieces. Doing this at a smaller level is generic programming. For instance,

subterms e :: [Term f IdentL] gives all identifiers contained in e. The equivalent code

in a language without typeclasses would be subterms(e , Filters.checkSort(SORT_IDENT)) or

similar. Meanwhile, Haskell automatically supplies subterms with the correct sort-

classification check by looking at the types. So, this representation is useful even

when only working with one language.

72

IPS in other languages Our implementation of incremental parametric syntax

relies heavily on three distinctive features. We discussed the use of type classes

above. The Term f l type relies on GADTs to work (else Term f IdentL could not be

fundamentally different from Term f AssignL). And we’ve used Haskell’s built-in code

generation, Template Haskell, throughout this chapter. Haskell is the only language

we know of that supports all three features. But even Haskell is not a perfect language

for building this kind of system, and we still have a wishlist of language features that

would make Cubix development much easier (e.g.: pattern matching that works

better with modular syntax).

We can envision a Cubix-like framework in a language without any of these three

features. It would use an extra-linguistic tool to generate boilerplate code. Users

would pass in operations manually in lieu of typeclasses, at some inconvenience. But

without GADTs, we see only two options, neither of them appealing: either write a

custom type-checker/analyzer, or face the pitfalls of dynamically-typed terms.

Supporting more languages To share code between languages, these languages

must have nodes which are similar enough to design a generic node whose seman-

tics model all of them. Expressions are similar in C and ML, and we see no barrier

writing transformations that can operate on them both. On the other hand, the exe-

cution semantics of Prolog nodes differs substantially from imperative and functional

languages, and so we do not expect to be able to write C/Prolog transformations.

Integrating Cubix with a third-party parser only requires that the parser output

to a Haskell ADT. We hence picked languages that already had good Haskell libraries,

but it can integrate with parsers written in other languages by writing a wrapper, as

we have done for Java.

Beyond Haskell Though we previously argued that Haskell uniquely provides fea-

tures important to Cubix, even Haskell has limitations which prevent us from ex-

tending Cubix in desired ways. Such limitations include:

• Negation: There is no way to write a constraint of the form “for any lan-

73

guage that does not contain the generic PointerArithmetic” fragment, owing to

Haskell’s open-world interpretation of typeclass instances.

• Slowness of type-level programming: It would be useful to define sepa-

rate languages for each version of Java, or for core C and the GCC dialect,

which adds new features like nested function definitions. Similarly, we would

like to support hybrid languages such as Cython (C/Python hybrid) and JSX

(JavaScript/XML hybrid). (Indeed, several open-source authors we contacted

when attempting to find potential case studies for Yogo asked about Cython

support.) All of these could be supported using language subset constraints.

In this scheme, we first define a signature for the core language, and then

extend it with additional fragments, e.g.: MCSig : + : GCCExts for GCC C, or

MCJava : + : Java7NewSyntax : + : Java8NewSyntax for Java 8. Language-specific op-

erations could then be defined for all dialects by e.g.: defining a typeclass in-

stance for all signatures which contain all 80 or so fragments in C (written

MCSig : <f). However, although Haskell is perfectly capable of expressing this,

we have been unable to actually run programs using this approach because the

compiler chokes when given such constraints.

• Pattern matching: If one writes a function in Cubix pattern-matching over

terms of a fixed sort and language, GHC cannot detect whether this match is

exhaustive or missed a case. This was later improved: in 2018, we filed a bug

report about GHC’s exhaustiveness checking, which was credited (in personal

correspondence and in one of their talks) as the inspiration for an entire paper

[69]. However, this only benefits functions written without view patterns, as

used by the splitDecl and inner functions in Figure 2-16. We would further

like to be able to write these same functions without the clunky view-pattern

syntax.

74

2.5 Evaluation

In previous sections, we argued that the insights of Cubix make language-parametric

transformations easy to write. In this section, we demonstrate a realistic language-

parametric transformation and its application to real software, and further evaluate

the following two claims:

• Readability : These transformations produce readable output, similar to what a

human would write. They do not needlessly destroy the program’s structure,

as do IR-based transformations.

• Correctness : Despite the low effort needed per language, transformations can

maintain correctness even when faced with the intricacies of multiple languages.

Additionally, because we built the tool of Section 2.5.1 after the rest of the work in

this section, our experience building also supports our claim that it is easy to extend

an IPS as more features are needed to support new transformations.

2.5.1 A Realistic Whole-Program Refactoring

In this section, we present the IPT tool (interprocedural plumbing transformation)

for threading variables through chains of function calls, inspired by the Dropbox and

Facebook stories in Section 2.1. We built the IPT tool as a language-parametric

transformation which we developed simultaneously for all 5 languages supported by

Cubix.

The IPT tool takes a method and a parameter name, and recursively has all

callers pass down said parameter, asking for user approval for each change. Figure 2-

17 presents a scenario where the end goal is to replace the call to strcpy within f1 with

strncpy, and the barrier is that the programmer is missing the len parameter needed

by strncpy. He invokes the IPT tool to add an int len parameter to f1, pressing “Yes”

4 times to change lines 1, 5, 4, and 9, so that the existing len parameter in f3 is passed

through 2 layers of function calls to f1. After the IPT tool is done, the programmer

can now manually change line 2 to strncpy(buf, "Hello", len); . The IPT tool has

75

1 void f1(char∗ buf) {
2 strcpy(buf, "Hello");
3 }
4
5 void f2(char∗ buf) {
6 f1(buf);
7 }
8
9 void f3(int len) {

10 char ∗buf = malloc(len);
11 f2(buf);
12 }

1 void f1(char∗ buf, int len) {
2 strcpy(buf, "Hello");
3 }
4
5 void f2(char∗ buf, int len) {
6 f1(buf, len);
7 }
8
9 void f3(int len) {

10 char ∗buf = malloc(len);
11 f2(buf, len);
12 }

Figure 2-17: Input/output example of the IPT tool on C

automated plumbing data through the system; all that is left for the programmer is

to choose where it comes from, and how it’s used.

Building this tool also shows that it is easy to extend an IPS to support new

transformations. We had not needed a generic notion of functions for our previ-

ous transformations we implemented (see Section 2.5.2), so we made an incremental

change to our parametric syntax. In 3 hours, we designed a generic fragment for

function definitions and calls that could be instantiated to model the features of all

languages under consideration. It took us 21 hours to design and implement the

changes to all 5 language representations, proportional to the complexity of each lan-

guage (e.g.: 5 hours to understand C declarations and their many variations). We

thus obtained the incrementality benefits of IPS: we didn’t need to build up-front

support for functions, but could still build transformations that needed them, and we

now have support for functions for all future transformations.

With the generic syntax for functions in place, building the tool itself took only

19 hours. Altogether, the extensions to Cubix averaged 5 hours per language, while

the tool itself averaged another 4 hours per language.

The implementation is fairly straightforward: it maintains two queues of function

calls and definitions to be modified, and prompts the user about each potential change.

76

After modifying each function definition, it uses a static analysis to find all callers

and add them to the queue. This static analysis is a parameter of each language, but

the analyses for each language may use a shared implementation using techniques of

multi-language analysis. Making this analysis more precise means the user will be

prompted for fewer erroneous changes.

Our IPT tool is still a prototype, with a minimal command-line UI, an imprecise

call analysis, and incomplete support for C function prototypes. Nonetheless, we have

used it in three real case studies in Java and Python, in addition to toy programs in

the other three languages.

We first used it on SimpleDB [113], a teaching database used at several universities.

SimpleDB totals 23, 000 lines of Java, and 11, 500 lines of tests. It frequently accesses

a global BufferPool object by calling Database.getBufferPool(). We used a two-step process

to eliminate this global. First, we used the IPT tool to thread a bufferPool parameter

throughout the program. This changed all Database.getBufferPool() calls to instead read

Database.getBufferPool(bufferPool). Second, we applied a find-and-replace to the entire

program to simplify them to bufferPool. We then manually changed entry points to

the program to supply this bufferPool parameter. Altogether, the IPT tool modified

484 lines across 41 files, while we manually modified 50 lines across 24 files. All tests

pass.

We then did two smaller case studies in Python. Flask [71] is a Python web micro-

framework which totals 6500 lines of Python and 5700 lines of tests. We used the

IPT tool to modify the _get_exc_class_and_code function to take a default exception

code, and propagated this parameter up several layers. The IPT tool modified 21

lines across 2 files. We only manually changed 2 lines: to use this parameter, and

to supply it at the top of the chain. Tornado [52] is a Python web server owned

by Facebook. It comprises 22, 000 lines of Python and 16, 000 lines of tests. We

changed the is_valid_ip function to take an accept_ipv6 parameter, and propagated

this parameter up several layers. The IPT tool changed 22 lines across 9 files. We

used a find-and-replace to provide a default value to many new parameters, and then

changed 3 lines manually. All tests pass for both Flask and Tornado.

77

For all five languages, we also tested the IPT tool on a toy program consisting of

three functions across three files that call each other; the tool successfully propagated

a parameter through all three functions.

2.5.2 Benchmark Transformations

To more rigorously evaluate our system, we have implemented three smaller source-

to-source transformations. These were chosen to explore the space of operations used

by program transformations and to require a minimum of user input. Table 2.2 lists

them and their line counts.

• The hoisting transformation Hoist, which lifts variable declarations to the top

of their scope. This is similar to elementary hoisting in Sections 2.2.1 and

2.4.3, except that it also supports Lua, and uses additional machinery to avoid

hoisting shadowed variables, and to deal with language special-cases such as C’s

structure initializers. Figure 2-1 gave a mundane example; Figure 2-18 gives an

example handling a JavaScript special case. This transformation supports all

languages except Python, which lacks variable declarations.

• The test-coverage instrumentation transformation Testcov, which prefixes each

basic block in the source code with an assignment which marks that that block

has executed. This produces data that could be fed into a test coverage tool.

It was inspired a Semantic Designs tool which implements this transform sepa-

rately for a dozen languages [151]. This transformation supports all languages.

Figure 2-19 shows an example special case for Java.

• The three-address code transformation TAC hoists all nested computations

into temporary variables, e.g.: changing 1+1+1 into t=1+1; t+1. This is a de-

ceptively complicated transformation, difficult to write at the source level for

even one language. Figures 2-20 and 2-21 show a few of the complexities it

supports, all handled cleanly by Cubix’s general infrastructure for operator

strictness and CFG-based insertion. This transformation supports JS, Lua,

78

1 function f() {
2 "use strict ";
3 if (x) {
4 var y =1;
5 }
6 }

1 function f() {
2 "use strict ";
3 var y ;
4 if (x) {
5 y = 1;
6 }
7 }

Figure 2-18: Hoisting JavaScript, showing interactions with JS’s "use strict "; prag-
mas and lack of inner scopes. No JS-specific hoisting code is needed, only a precise
representation of JS blocks.

Table 2.2: Transformations implemented and their size. Line counts are split into
the core code of the transformation, plus the per-language code to support language-
specific operations and customization. Line counts exclude the file prologue, i.e.: they
count from the first line of code which is not an import statement.

Transformation Languages Supported Core LOC Extra LOC
per language

Hoist C, Java, JavaScript, Lua 154 65
Testcov All 77 25
TAC JavaScript, Lua, Python 360 116

and Python. It does not support Java or C because declaring the temporary

variables would require type inference, which in turn requires symbol-table con-

struction, a heavyweight piece of language infrastructure.

All transformations use a mixture of generic and language-specific code. However,

the language-specific code is usually much less complex, and fewer lines are needed

per-language, as shown in Table 2.2.

2.5.3 Correctness

We claim it’s feasible to write semantics-preserving language-parametric transforma-

tions with our approach. Hence, we collected language test suites for each of the 5

languages, and improved our transformations until we had a 100% pass rate for all

transformations on all languages.

79

1 public void foo(int x) {
2 if (x > 0) {
3 while(true)
4 x++;
5 // Unreachable code
6 }
7 }

1 public void foo(int x) {
2 TestCoverage.coverage [0] = true;
3 if (x > 0) {
4 TestCoverage.coverage [1] = true;
5 while (true)
6 x++;
7 }
8 TestCoverage.coverage [2] = true;
9 }

Figure 2-19: Test coverage for Java. A naive transformation would insert a test
coverage statement on line 5 after the while loop, causing an “unreachable code”
compile error. This case is supported purely through the CFG-generator (by emitting
a CFG in which control cannot transfer to code after the loop’), requiring no Java-
specific code in the transformation itself.

1 while (f() && g(1+1)) {
2 x++;
3 }

1 var t1 = f ();
2 var t2;
3 if (t1) {
4 var t3 = 1 + 1;
5 t2 = g(t3);
6 }
7 var t4 = t1 && t2;
8 while (t4) {
9 x++;

10 t1 = f();
11 if (t1) {
12 var t3 = 1 + 1;
13 t2 = g(t3);
14 }
15 t4 = t1 && t2;
16 }

Figure 2-20: TAC transformation example for JavaScript, showing handling of loops
and non-strict operators.

80

1 if x is None:
2 doThing1()
3 elif x .foo ():
4 doThing2()

1 t1 = x is None

2 if t1:
3 del t1

4 doThing1()
5 else :
6 del t1

7 t2 = x.foo()
8 if t2:
9 del t2

10 doThing2()
11 else :
12 del t2

Figure 2-21: TAC transformation example for Python. It avoids computing x .foo()
when x is None, and deletes all temporaries immediately after use, as Python is sensitive
to the GC behavior. Adding the del statements is 5 lines of Python-specific code.

The caveat, though, is that there are some tests which the transformations should

not pass. First, we use third-party parsers and pretty-printers, all of which have

bugs. We contributed some bug fixes to all of these projects, but issues still remain.

Second, all of the dynamic languages have self-referential tests which will never pass

(e.g.: “assert this function was declared on line 37”). We rule out these cases by

first checking if the test still passes after running the identity transformation Ident,

consisting of parsing and pretty-printing the program. 93.4% of tests pass this Ident

transformation. This discussion excludes the Lua test suite, which has other issues

explained below.

Table 2.3 lists the language implementations and test suites used in our evaluation.

The C, Lua, and Python tests come from their implementations, while the JavaScript

ones come from the official specification conformance test suite. The authors of

K-Java, [20], report that no Java language tests are publicly available, and hence

created their own specification tests, which we use. We restricted ourselves to the

core language tests of test262, using the same subset as the JavaScript semantics KJS

[132], and omitted a small handful of multi-file Java tests among the Java ones, which

caused problems with our test harness. We used the entirety of the Lua, Python, and

81

Table 2.3: Compilers/interpreters and test suites used in evaluation

Language Compiler/Interpreter Test Suite Test Files Test LOC
C GCC 6.3.0_1 gcc-torture 1394 53,637
Java JDK 1.8.0_65 K-Java 755 26,568
JS Node.js v0.10.24 test262 2782 128,698
Lua Lua.org 5.3.3 Lua Tests 28 12,017
Python CPython 3.7.0a0 CPython Tests 404 249,499

C test suites.

Table 2.4 shows the number of passing tests for each language and transforma-

tion. The Ident transformation is a baseline transformation which simply parses and

pretty prints a program, in order to filter out “bad tests” as described above. The

Hoist, Testcov, and TAC columns show the results of their respective transforma-

tions. Comparing the other transformations to Ident, all but 12 tests pass. The

failing JavaScript and Python tests are all self-referential tests that were not ruled

out by Ident. The failing JavaScript tests all use function.toString(), which retrieves

the textual source code of the function. The Python ones inspect the runtime repre-

sentation of functions, such as the presence of opcodes in the compiled bytecode or

the number of bytes used per stack frame. The failing Java hoist test is actually due

to a crash of javac. Manual inspection shows that this program is indeed correct, and

the bug has been confirmed and fixed by the JDK developers [82].

While we were very successful with the other language test suites, we found sub-

stantial barriers using the Lua test suite to test our transformations. Its tests are

highly self-referential, including a check that the “test” function is defined on line 17,

points where it undefines every global variable, and even a test file that reads its

own source as input and looks at certain offsets, thereby breaking if the file changes

character encoding. We nonetheless tried.

As the Lua tests are distributed as a single program, we modified the Lua test suite

to maintain a count of passed assertions, instead of stopping at the first failure, and

deleted some of the overly self-referential assertions. We found that the total number

of calls to assert was nondeterministic, but the number of failing assertions was not. In

82

Table 2.4: Results of each transformation on the test suites

Lang Total Ident Hoist Testcov TAC
C 1394 1305 1305 1305 N/A
Java 755 745 *744 745 N/A
JS 2782 2573 2573 2568 2572
Python 404 360 N/A 358 357
Lua Reported separately
* Not including test which crashed javac

one set of runs, we obtained the following numbers: 70440/70456 passing assertions

for the original, 70279/70295 for the identity transformation, and 70463/70479 for

hoisting. We gave up attempting to get it working for the test coverage transform,

due to crashes related to its metaprogramming around global variables. We similarly

gave up for the TAC transformation, because the Lua VM does not allow for more than

200 local variables in any scope, and the TAC transformation overwhelms this easily.

We conclude that the Lua test suite is unsuitable for testing program transformations.

2.6 Readability Study

We ran a study to evaluate the readability of our transformations’ output. The overall

setup of our experiment is like a Turing test. First, we ask a set of human contributors

to transform programs by hand. We then give a separate set of human judges these

programs, alongside the corresponding automatically transformed programs, and ask

them to rate them both on correctness and quality. Because low-level code format-

ting is outside the scope of our claims, we automatically reformat the human-written

code before presenting them for comparison. Outside of formatting, we attempted

to bias the experiment in favor of the humans, allowing them to resubmit until their

transformed programs were correct according to our extremely thorough test suites.

Despite this, in our final results, the judges gave the automatically transformed pro-

grams a higher average rating.

Our experiment proceeds in three phases. In the first phase, we construct the

RWUS suite, providing suitable programs on which to run the study. In the second

83

phase, we ask human participants to manually apply each of the three studied trans-

formations on a code sample. In the final phase, human judges from Mechanical Turk

rate the manually-transformed code against the same code transformed by our sys-

tem. Note that this study was completed using earlier versions of the transformations

which failed some tests.

2.6.1 Phase 1: Constructing the RWUS Suite

As objects in our study, we needed (1) representative samples of real-world code, and

(2) an objective measure of whether the code was transformed correctly. The second

criterion is the main difficulty, as random samples of code typically do not come with

thorough tests, and certainly not tests that are easy to run. Hence, we created our

own.

The RWUS (Real World, Unchanged Semantics) suite consists of 50 functions

across 5 languages randomly selected from top GitHub projects. For each, it also

includes a test suite designed with the intention that only functions semantically

equivalent to that function will pass. Each function is distributed as an entry. An

entry is a file containing the original sample, mocks for all referenced symbols, tests,

and a wrapper main procedure which invokes the tests. The files can all be compiled

and executed without any dependencies. The tests are used by invoking a script that

replaces the sample with a transformed version, and then executes the resulting file.

We selected the functions for the RWUS suite as follows: For each of C, Java,

JavaScript, Lua, and Python, we downloaded the top 20 projects in that language on

GitHub from those with at least 500 lines, sorted by number of users who “starred”

that project. We then uniformly at random selected a line of code from the projects.

If this line of code lies within a function, we took the innermost such function as

a sample; else, we repeated the process. We discarded all samples which were not

between 5 and 50 lines of code, excluding function signatures, blank lines, and com-

ments. We repeated this process until we had 10 samples for each language. One

shortcoming of this approach is that the top-rated projects on GitHub vary in size

by orders of magnitude. As the extreme, 90% of our C corpus and all 10 C samples

84

come from Linux. The other 40 samples come from 24 different projects.

For each sample, we constructed test cases ensuring full path coverage, and added

checks to ensure all mocked functions are called in the expected order with the ex-

pected arguments. The resulting tests are incredibly thorough. While the actual

samples total 1158 lines of code, the RWUS suite totals 8070 lines of code.

The RWUS suite is available from:

https://github.com/cubix-framework/rwus

2.6.2 Phase 2: Obtaining Human-Written Transformations

We recruited programmers through department mailing lists, flyers posted around the

department, and social media. Due to the relative scarcity of Lua programmers, we

also posted on Lua forums, and asked Lua participants to spread the study by word

of mouth.

Participants were sent to a website, where they would download a single sample

from the RWUS suite along with its tests, and were asked to perform each of our

transformations by hand on the file. They were allowed to contribute one sample per

language, and were offered a $10 Amazon gift card for each.

We inspected each submission by hand. Participants were asked to resubmit until

their transformed samples passed all tests, and had no significant transformation

errors, such as unhoisted variables.

2.6.3 Preparing the Samples

After we had collected all 50 human-transformed samples, we ran them through the

corresponding parser and pretty printer to normalize formatting. We then ran our

transformations on each of the RWUS samples, and evaluated them with the RWUS

test suites.

We did not run any transformation on the RWUS samples until all development

on the transformations had ceased. We also attempted to avoid allowing knowledge

85

https://github.com/cubix-framework/rwus

Table 2.5: Counts of programs where presentation to the human judges was inappro-
priate

C Java JS Lua Python
Identical 6 9 1 5 3

Failed 0 1 4 0 1

of the samples in the RWUS suite to influence development of the transformations,

although a single researcher was responsible for both.

Of the 120 transformed pairs, for 24 of them, the automatically transformed ver-

sion was identical to the human written one after reformatting. These are broken

down per language in Table 2.5. Because this study was done using older versions

of the transformations, before their pass rate had been perfected, six1 automati-

cally transformed samples either failed their test suites or caused an error in the

transformed program. Also, for one sample, a pretty-printer bug caused both the

human-transformed and automatically transformed versions to fail to compile. The

remaining 89 pairs were sent to human judges for evaluation in Phase 3.

2.6.4 Phase 3: Comparing Human and Machine-Written Trans-

formations

In Phase 3, we asked human judges from Mechanical Turk to rate the manually-

transformed code from Phase 2 along with their automatically transformed counter-

parts.

We created one task on Mechanical Turk for each language/transformation com-

bination. For each judge entering our website interface, we began by presenting an

explanation and example of the transformation, before presenting the questions. Each

question shows a sample program, along with the automatically transformed version

produced by our system, and the manually-transformed version collected in Phase 1.

They were asked to rate both on a 1–5 scale. We instructed that they should first

1By chance, samples that trigger bugs and unsupported cases were overrepresented in the samples,
and it would bias the study to modify the transformations in response to the randomly-chosen
samples.

86

Figure 2-22: Main parts of GUI shown to human judges in the readability study.

rate the transformed programs on correctness vs. the original program, second on

faithfulness to the intended transformation, and only third on general prettiness and

code quality. Both the order of questions and the order of the transformed pairs were

randomized. We assigned each of the 20-30 transformed samples to 10 judges, giving

us up to 300 ratings per language. Figure 2-22 shows the key parts of the website

interface shown to judges.

Figure 2-23: Counts of differences between the ratings of the machine transformations
and the human transformations. The leftmost bars represent cases where the judge
rated the machine-produced output higher than the human-produced.

87

2.6.5 Quality Control

The setup described above does not preclude someone from rating programs randomly,

so we employed two quality-control mechanisms. Our primary form of quality control

was the creation of “canary” questions. Canaries appear as normal questions, except

that the programs contained therein were contrived. In two of the canaries, one of the

programs was clearly not a transformed version of the original. In the third canary,

both displayed programs were identical. We rejected any submission in which the

worker did not rate the correct program higher for the first two canaries, or did not

rate both programs of the third canary the same. Second, if a worker ever submitted

two answers within 11 seconds of each other, we marked this worker as untrustworthy,

and rejected all submissions by him. We picked this value after observing the times

spent on each question in dry runs of the study.

We noticed substantial differences between workers who did and did not pass

the quality controls. Workers with one rejected submission typically had rejected

submissions for many different languages. Workers with accepted submissions were

much more likely to only submit for one language. Workers typically either had all

their submissions accepted or all rejected. Furthermore, we noticed that rejected

submissions were typically completed in much less time than accepted ones, although

many workers who failed the canaries were substantially slower than the fastest correct

workers.

The experimenters manually inspected a selection of judgments from accepted

submissions, and found them all reasonable. Overall, our observations suggest that

our quality control mechanisms did effectively classify workers on skill, and that our

data is high-quality.

2.6.6 Results

For each language, we tabulated the difference in ratings between the human-written

and automatically transformed programs. Our results are given in Figure 2-23. The

average differences in ratings ranged from −0.075 for Python (favoring the humans)

88

to +0.633 for Java (favoring the machine). The differences for C, JavaScript, and

Lua were −0.014, +0.396, and −0.052 respectively.

Our goal was to show that the output of our transformations is not less readable

than the human-transformed code. This is a problem in statistics known as non-

inferiority testing [180]. For each language, we formulated a hypothesis that the

average difference in ratings between each the machine- and human-transformed code

is at least −1. We then factored in the pairs that were not sent to Phase 3: each

identical pair was counted as 10 judgments of equality (difference 0), and each pair

where the machine-transformed version was incorrect was counted as 10 judgments

that maximally penalize the machine version (difference −4). We tested each of the

5 hypotheses using a paired t-test. For each language, it showed that the machine-

transformed code was non-inferior by a non-inferiority margin of at most 1 with

𝑝 < 10−8. In retrospect, this data had the power to prove the hypothesis with a much

smaller non-inferiority margin.

Considering both the raw data and the statistical tests, our study provides strong

evidence that the output of transformations in Cubix is no less readable than hand-

transformed code, showing that implementing source-to-source transformations with

incremental parametric syntax avoids the mangling common to IR-based approaches.

2.6.7 Threats to Validity

Our results are potentially biased by using a real-world distribution of programming

constructs, as opposed to intentionally constructing a suite filled with corner cases.

The humans are hindered by a lack of learning: they only perform each transformation

once per language. Finally, we cannot be certain of the quality of the data from

Mechanical Turk. In our dry runs, we found that workers on Mechanical Turk tend

to rate simple programs more highly, even when the transformation is incorrect. Two

of our canaries are specifically designed to prevent this behavior.

89

2.7 CFG System

2.7.1 The Need for Advanced CFG Manipulation

Languages differ in syntax. Cubix gains much of its multi-language capability from

its ability to massage differing syntaxes to share identical components. But another

approach is to write a transformation beyond the syntactic level.

In this section, we introduce just a non-syntactic transformation operator offered

by Cubix, control-flow-based insertion. And we also explain the bedrock under this

operations rests: Cubix’s CFG-generation machinery, showing how Cubix’s generic

programming capabilities shine in a non-transformation task, enabling Cubix to gen-

erate high quality control-flow graphs with relatively little code, averaging only 122

language-specific lines per CFG generator.

We now illustrate the use of control-flow based insertion with a simple challenge:

Some analysis has identified that a string variable s is unsanitized at a certain use-site.

How would you build a tool that inserts the line s = sanitize(s); before that use-site,

as near as possible?

This operation seems trivial when one imagines the common case where s sits

within a one-line statement, and the transformation must merely insert the sanitiza-

tion on the previous line. Yet complexity appears when one considers that the use of

s may be awkwardly situated inside some construct with interesting control-flow, and

may have multiple predecessors, separated by some distance. A common case is when

s lies in the condition of a for-loop; then the sanitization must be inserted before

the loop, at the end of the loop, and before every continue statement. Figure 2-24

gives example input and output for this case in C. Similar problems arise with other

control-flow constructs. When use is in the condition of a Python elif, for instance,

as in Figure 2-25, adding the sanitization will require splitting the elif into a nested

conditional (Figure 2-25b).

There are many existing techniques for program transformation, such as those

surveyed in [172]. To a first approximation, all of them require the programmer to

eventually specify tree rewrites, and would hence require giving many cases to work

90

f o r (i n t i = 0 ; i++ && ! isStopCode (s) ; i++) {
i f (! c o nt a i n s C om m a n d (s))) {

s = nextInput () ;
c on t i n u e ;

}

process (s) ;
s = nextInput (s) ;

}

(a)

s = sanitize (s)
f o r (i n t i = 0 ; i++ && ! isStopCode (s) ; i++) {

i f (! c o nt a i n s C om m a n d (s))) {
s = nextInput () ;
s = sanitize (s)
c on t i n u e ;

}

process (s) ;
s = nextInput (s) ;
s = sanitize (s)

}

(b)

Figure 2-24: Sample C input (a) and output (b) for sanitization transformation,
targeting isStopCode(s).

i f n o t i f i c a t i o n R e c e i v e d () :
h a n d l e N o t i f i c a t i o n ()

e l i f isCommand (s) :
process (s)

e l s e :
log (" Sk ipped ")

(a)

i f n o t i f i c a t i o n R e c e i v e d () :
h a n d l e N o t i f i c a t i o n ()

e l s e :
s = sanitize (s)
i f isCommand (s) :

process (s)
e l s e :

log (" Sk ipped ")

(b)

Figure 2-25: Sample Python input (a) and output (b) for sanitization-transformation,
targeting isCommand(s).

91

on these examples. But, Cubix’s multi-language CFG support and its control-flow

based insertion operation, the following function performs this transformation in all

of Cubix’s 5 languages, correctly handling the special cases above.

i n s e r t S a n i t i z a t i o n targetNode var =

d o m i n a t i n g P r e p e n d targetNode

(assign (ident var)

(functionCall " s a n i t i z e "

[ident var]))

Half of the magic of this snippet comes from Cubix’s incremental parametric syntax,

allowing the (assign . . .) expression to expand into one of several language-specific

variants depending on the inferred type of each call-site. We now introduce the other

half of the magic: the new source-to-source transformation paradigm of control-flow

based insertion, invoked here through the dominatingPrepend function. The idea of

CFG-based insertion is to provide a new primitive operation “Insert code A at points

ensuring that it always runs before/after code B.” Behind this lies a graph search and

some language-specific operations for checking where the insertion is possible; these

together turn what would be a menagerie of casework into one declarative statement

of intention.

Just as Cubix innovates in using control-flow graph for transformation so as to

amortize the cost of building tools across multiple languages, it also innovates in

amortizing the cost of CFG infrastructure. In the other half of this section, we

present a new monadic decomposition of CFG-generators which allows them to be

written in a language-modular fashion. The upshot of this is that we were able to

construct complete CFG generators for 5 languages, passing an extensive test suite

which includes CFG “challenge problems” such as Duff’s device [181], in only 1100

total lines of code — and averaging 122 lines of language-specific code — compared

to a combined 2400 lines of code in the best pre-existing comparison CFG-generators

we found. We demonstrate this in miniature with a fully-worked tutorial: 19 lines of

code for a full CFG-generator on a language with 17 distinct node types.

While incremental parametric syntax attacks the modularity problem caused by

92

syntactic differences, CFG-generation presents its own modularity challenges, caused

not only by syntactic differences but also by control effects. For example, even when

multiple languages have syntactically-identical while-loops, a naive “make CFG for

while” function does not work because loops in different languages may interact dif-

ferently with break, continue, and goto statements within their bodies. Similar factors

prevent code reuse between while- and foreach-loops, even though the control-flow

structure is the same. We shall also find that control-flow graphs, under their most

common designs, require non-local information to construct, demanding recursion

patterns which break the separation between language fragments.

We answer with a fully-compositional design for CFG-generators. Our design

uses monads to separate handling of control effects, and removes the need for non-

local information. Under this design, it becomes quite straightforward to create a

single, reusable “make CFG for while” function. Our design further allows several

standard cases to be handled declaratively, including nodes with a default left-to-

right evaluation order, nodes which do not take part in computation (e.g.: type

declarations), and nodes which introduce a new control-flow contour (e.g.: lambdas).

We explain these techniques with a tutorial in which we construct full CFG-generator

for a small Imp language with 17 distinct node types; including loops, lambdas, and

goto; in only 19 lines of code.

In the remainder of this section, we present a tutorial for building language-

modular CFG-generators, the design of control-flow-based insertion, and the imple-

mentation in Cubix, shown correct by a test suite of over 4000 lines.

2.7.2 CFG Generation: Not So Easy

Though our ultimate goal is to build language-modular CFG-generators, modularity

problems appear in CFG generators even for one language. In this, we illustrate the

problems of naive definitions CFG generators. In a tutorial reconstruction, we proceed

to refine such a naive generator into a new, compositional design, in preparation for

generalizing this design in Section 2.7.3.

93

A Naive CFG-Generator

We present this datatype for a simple imperative language, along with an interface

for graphs:

type Var = String

type Label = Int

data Exp = Add Exp Exp | Lt Exp Exp | VarExp Var

data Stmt = Assign Var Exp

| If Exp LabStmt LabStmt

| While Exp Stmt

| Block [LabStmt]

type LabStmt = (Label, Stmt)

type Graph −− definition not shown

addEdge :: Graph → Label → Label → Graph

connect :: Label → Label → State Graph ()

optConnect :: Label → Maybe Label →State Graph ()

optConnect l1 (Just l2) = connect l1 l2

optConnect l1 Nothing = return ()

Disregarding the extra complexity to construct basic-blocks, a traditional statement-

level CFG-generator would create one node per statement, as a recursive traversal.

We construct an implementation below, and then discuss why its design does not

readily extend to a language-generic implementation.

First we design the recursion. Let us think about what information must be passed

down and up the stack in such a traversal. There will be an edge between the last

statement in each branch of an if-statement, and the first statement after the if. Some

part of the code must have access to the nodes of both. This can be accomplished

94

either by passing down the node after the if , or by passing up the set of nodes which

may be the last thing executed. In our implementation, we choose the former: the

recursion passes down the the next node that runs after the current term.

Below is code for the CFG generator. As the language is small, the code is short,

yet contains a high density of special cases.

genCfg :: Maybe Label →LabStmt → State Graph Label

genCfg next (l , Assign _ _) = do optConnect l next

return next

genCfg next (l , If _ s1 s2) = do l1 ← genCfg next s1

l2 ← genCfg next s2

connect l l1

connect l l2

return l

genCfg next (l , While _ s) = do l' ← genCfg (Just l) s

connect l l '

optConnect l next

return l

genCfg next (l , Block ss) = do ml' ← genCfgBlock next ss

case ml' of

Just l ' → connect l l '

Nothing → optConnect l next

return l

genCfgBlock :: Maybe Label → [LabStmt]

→ State Graph (Maybe Label)

genCfgBlock next [] = return Nothing

genCfgBlock next [s] = do l' ← genCfg next s

optConnect l ' next

return (Just l ')

genCfgBlock next (s :ss) = do l ← genCfgBlock next ss

95

l ' ← genCfg (Just l) s

return (Just l ')

For a language so small, any problems that could exist in this code would be trivial

inconveniences. Yet, viewed through a magnifying glass, it is already possible to spot

two issues that may blossom into barriers as the language grows, or when trying to

make this code language-modular.

The first is that this code is not compositional. This means that the CFG for

one node is not a function of the CFGs for its child nodes. Indeed, some lack of

modularity is already present: thinking carefully about the reason for each line, the

handling of next nodes is derived from the design of Block nodes (e.g.: it would be

different if the cons-lists of Block were replaced with snoc-lists or a binary Seq node).

The second is that the implementation of each case assumes this language has

no nonlocal control-flow. Upon the introduction of new nodes with nonlocal control-

flow, every case of the CFG-generator would need to be rewritten to thread extra

state throughout the generator.

In the following subsections, we construct a new architecture that addresses all

these problems.

The Case for Enter/Exit

In the previous subsection, we determined that the genCfg function needed to pass

around non-local information because it may sometimes need to draw an edge con-

necting an AST node and its (great-)grandparent. This is also the reason genCfg is

not compositional. To make it compositional, we must change the CFG design. Our

proposal: create two CFG nodes per AST node, representing its entry and exit.

With this change, each AST node’s CFG fragment depends only on its children.

No extra information is passed down in recursion. And, as an added bonus, the

special casing has also been eliminated, for it stemmed from decisions over where to

handle the non-local information. Here are the first three cases:

makeEnterExit :: State Graph (Label, Label)

96

−− Implementation not shown

genCfg :: LabStmt → State Graph (Label, Label)

genCfg (_ , Assign _ _) = do (enter, exit) ← makeEnterExit

connect enter exit

return (enter, exit)

genCfg (_ , If _ s1 s2) = do (enter, exit) ← makeEnterExit

(enter1, exit1) ← genCfg s1

(enter2, exit2) ← genCfg s2

connect enter enter1

connect enter enter2

connect exit1 exit

connect exit2 exit

return (enter, exit)

genCfg (_ , While _ s) = do (enter, exit) ← makeEnterExit

(enterBody, exitBody) ← genCfg s

connect enter enterBody

connect exitBody enter

connect enter exit

return (enter, exit)

While the increase in the number of CFG edges has correspondingly increased the size

of the code, the amount of information has decreased thanks to the higher symmetry.

Gone are the branches; instead, each case reads as a list of the edges corresponding

to the current node.

However, the casework needed to deal with empty blocks has not gone away —

it’s gotten worse! Continuing, the case for Block’s looks like this:

genCfg (_ , Block ss) = do

(enter, exit) ← makeEnterExit

mEnterExitSS ← genCfgBlock ss

case mEnterExitSS of

Nothing → return ()

97

Just (enterSS, exitSS) → do connect enter enterSS

connect exitSS exit

return (enter, exit)

genCfgBlock :: [LabStmt] → State Graph (Maybe (Label, Label))

−− Implementation not shown

We shall find that dealing with possibly-empty returned nodes is such a common

situation that it merits its own primitive, and all the casework can be encapsulated

in a new operation for combining a possibly-empty pair of nodes.

type EnterExitPair = Maybe (Label, Label)

combineEnterExit :: EnterExitPair → EnterExitPair

→ State Graph EnterExitPair

combineEnterExit Nothing p2 = return p2

combineEnterExit p1 Nothing = return p1

combineEnterExit (Just (l1, l2)) (Just (l3, l4)) = do

connect l2 l3

return (Just (l1, l4))

With this new primitive, branching is eliminated. Here is the new code for Block:

genCfg (_ , Block ss) = do

(enter, exit) ← makeEnterExit

eepSS ← genCfgBlock

x ← combineEnterExit (Just (enter, enter)) eepSS

combineEnterExitPair x (Just (exit, exit))

genCfgBlock :: [LabStmt] → State Graph EnterExitPair

genCfgBlock ss = fold (\s mEepRest → do

eepS ← genCfg s

eepRest ← mEepRest

combineEnterExit eepS eepRest)

98

Nothing

ss

Monadic Deferral

Having made CFG-generation compositional, we chase the next milestone of modu-

larity: how to make each case of genCfg into an independent function? Doing so would

make it possible, for instance, to share CFG-generation code across all languages with

while-loops.

genCfgWhile :: (Label, Label) → State Graph EnterExitPair

genCfgPython :: PyTerm → State Graph EnterExitPair

genCfgPython (PyWhile _ s) = do sEnterExit ← genCfgPython s

genCfgWhile sEnterExit

−− ...other cases

genCfgC :: CTerm → State Graph (Label, Label)

genCfgC (CWhile _ s) = do sEnterExit ← genCfgC s

genCfgWhile sEnterExit

−− ...other cases

This refactoring involves hoisting the recursive genCfg call out of the case for While.

This works for the simple language we have used thus far. It does not work when

genCfg may have non-commutative effects. Such effects in the CFG-generator occur

when there are control-effects in the code. Let us add break and continue to our

language:

data Stmt = ...

| Break

| Continue

Generating a CFG for these new nodes requires tracking the break and continue

targets. This requires adding a new parameter to CFG generation, either explicitly,

or by rolling it into the state. The latter is clearly the more modular option. We

99

thus extend the state of the CFG-generator to also include a stack of break/continue

targets, and update the signatures of other functions accordingly.

data CfgGenState = CfgGenState { graph :: Graph

, loopStack :: [(Label, Label)] }

type CfgGen a = State CfgGgenState a

combineEnterExit :: EnterExitPair → EnterExitPair

→ CfgGen EnterExitPair

connect :: Label → Label → CfgGen ()

pushLoop :: Label → Label → CfgGen ()

popLoop :: CfgGen ()

With these additions, it is no longer possible to write genCfgWhile with the given sig-

nature. genCfgWhile must use pushLoop and popLoop to communicate the break/continue

targets to invocations of genCfgC/genCfgPython on nodes in the loop body. However,

the CFGs for these nodes are generated before genCfgWhile is even called. In this new

language, the CFG fragment for a node is no longer a function of the CFG fragments

for its subnodes. genCfg is no longer compositional. Instead, the CFG fragment for

a node also depends on the control effects of its children. And so, by accepting a

monadic value for the CFGs of its children, genCfgWhile can control the state passed

to the recursive calls to genCfg, and again becomes compositional:

genCfgWhile :: CfgGen (Label, Label) → CfgGen (Label, Label)

genCfgWhile mBodyEnterExit = do

(enter, exit) ← makeEnterExit

pushLoop enter exit

(bodyEnter, bodyExit) ← mBodyEnterExit

popLoop

connect enter bodyEnter

connect bodyExit exit

connect enter exit

return (enter, exit)

100

genCfgBreak :: CfgGen (Label, Label)

genCfgBreak = do

(enter, exit) ← makeEnterExit

(breakTarget, continueTarget):rest ← gets loopStack

connect enter breakTarget

return (enter, exit)

genCfgContinue :: CfgGen (Label, Label)

genCfgContinue = do

(enter, exit) ← makeEnterExit

(breakTarget, continueTarget):rest ← gets loopStack

connect enter continueTarget

return (enter, exit)

It is now straightforward to define a language-specific genCfg function which defers to

these cases.

genCfg :: Stmt → CfgGen (Label, Label)

genCfg (While _ s) = genCfgWhile (genCfg s)

genCfg Break = genCfgBreak

genCfg Continue = genCfgContinue

−− cases for Assign, If , Block not shown

Finer-Grained CFGs

Control-flow graphs are best known from their use in compilers, where the definition

“a CFG is a directed graph of basic blocks” has become sacrosanct. We have already

departed from this somewhat by not collapsing consecutive statements into basic

blocks, and by using two nodes per statement.

Yet smaller units also have control-flow (e.g.: f() + g() evaluates f() before g()),

and we argue that, for static analysis and transformation tools, finer-grained control-

flow graphs are a better choice. Indeed, many static analysis frameworks, such as

101

IncA [161] and Polyglot [126], already use expression-level CFGs. We will revisit

this question in Chapter 4.1, but, for the problem at hand, the following observation

resolves the issue decisively: in the examples of Section 2.7.1, the CFG-based inserter

must find the predecessors of the condition of the loop and conditional. It is thus not

possible to build the CFG-based inserter without a finer-grained CFG.

In the remainder of this subsection, all control-flow graphs will be expression-level.

2.7.3 Language-Modular CFG Generation

Having discovered and eliminated the bottlenecks to modularity, we can now ag-

gressively factor out and automate common parts. In this subsection, we present

the remainder of our approach to CFG-generation, and use it to create a complete

CFG-generator for a language with 17 node types in only 19 lines of language-specific

code.

Additional background: Operations on parametric syntax terms

An advantage of using explicit type-level recursion not previously discussed is that it

enables structured recursion schemes. We stated in Section 2.7.2 that the new CFG-

generator design is compositional, meaning that the CFG of a node is a function of

those of its subterms. The catamorphism recursion scheme formalizes this. A recur-

sive function like genCfg, implemented as a catamorphism, is built out of a function

of type TermSig (m (Node, Node)) → m (Node, Node), for some appropriate monad m. This

is called an algebra of the TermSig functor with carrier m (Node, Node). The input to

this function is a term where each child node has been replaced by a value of type

CfgGen (CfgNode, CfgNode) (i.e.: a command that, when run, produces a CFG and its

enter/exit nodes). The catamorphism construction combinator cata then lifts this

algebra into a recursive function over an entire term.

We define some operations for multi-sorted terms, followed by an implementation

of catamorphisms. HFunctor and HFoldable are higher-kinded analogues of the standard

Functor and Foldable typeclasses. K is a type-level K-combinator, needed for embedding

102

types that do not have a sort parameter inside a multi-sorted tree.

class HFunctor f where

hfmap :: (forall l . f l → g l) → (forall l . h f l → h g l)

newtype K a l = K { unK :: a}

class (HFunctor h) ⇒ HFoldable h where

hfold : (Monoid m) ⇒ h (K m) l → m

−− Instances are auto−generated

hcata :: (HFunctor f) ⇒ (f a i → a i) → Term f i → a i

hcata f (Term t) = f (hfmap (hcata f) t)

As a simple example of a catamorphism, consider this function to compute the number

of statements in a term. Notice how there are no explicit recursive calls; instead, sizeF

inputs a “pre-digested” term, in which each child has been replaced by its size.

sizeF :: ImpTerm (K Int) l → K Int l

sizeF (Assign _ _) = K 1

sizeF (If _ (K n1) (K n2)) = K (1 + n1 + n2)

sizeF (While _ (K n)) = K (1 + n)

...

size :: ImpTerm l → Int

size = hcata sizeF

We shall demonstrate a modular genCfg built in this fashion.2

A Generic Setup

We now proceed to develop a language-modular infrastructure for CFG-generators.

We begin by defining the language Imp, which we defined as a showcase for our
2In the actual implementation, we use a recursion scheme which also permits cases to inspect the

children themselves. This is rarely used.

103

techniques. Imp features two kinds of control effects, break and goto, and contains both

lambdas and function definitions, constructs which define new control-flow contours

(i.e.: separate intraprocedural CFGs). It also has type declarations, for the sole

purpose of demonstrating how our approach handles nodes which do not take part

in computation. Its signature is below. Imp has 5 base sorts: expressions, lambdas,

statements, function definitions, and types; we repurpose Haskell’s list constructor

to create new sorts for lists of statements and function definitions. A top-level Imp

program is then given by a value of type Imp [FunDefL].

type Var = String

data ExpL; data TypeL; data LambdaL; data StmtL; data FunDefL

data ImpSig e l where

Add :: e ExpL → e ExpL → ImpSig e ExpL

Lt :: e ExpL → e ExpL → ImpSig e ExpL

VarExp :: Var → ImpSig e ExpL

LambdaExp :: e LambdaL → ImpSig e ExpL

CallExp :: e ExpL → e ExpL → ImpSig e ExpL

IntType :: ImpSig e TypeL

BoolType :: ImpSig e TypeL

Lambda :: Var → e TypeL → e ExpL → ImpSig e LambdaL

Assign :: Var → e ExpL → ImpSig e StmtL

If :: e ExpL → e StmtL → e StmtL → ImpSig e StmtL

While :: e ExpL → e StmtL → ImpSig e StmtL

Break :: ImpSig e StmtL

GotoLabel :: String → ImpSig e StmtL

Goto :: String → ImpSig e StmtL

Block :: e [StmtL] → → ImpSig e StmtL

104

FunDef :: Var → e StmtL → ImpSig e FunDefL

data Fix f l = In (f (Fix f) l)

type Imp = Fix ImpSig

We have previously mentioned Cubix’s generic support for lists embedded in a tree.

Its constructors are called ConsF and NilF (smart constructors: ConsF ′ and NilF ′), and

they can be used to provide terms of sort [StmtL] and [FunDef].

We now state the core monad operations needed in CFG construction.

type CfgNode = Int

class MonadCfgGen m where

makeEnterExit :: m (CfgNode, CfgNode)

connect :: CfgNode → CfgNode → m ()

These operations can be implemented on any state monad whose state contains certain

fields, discussed in the next subsection.

class HasCfgGenState s where

−− defined in next subsection

instance (HasCfgGenState s) ⇒ MonadCfgGen (State s)

We define an EnterExitPair type as in Section 2.7.2. We abbreviate it to EEP, as it is

used quite frequently.

type EEP = Maybe (CfgNode, CfgNode)

combineEnterExit :: (MonadCfgGen m) ⇒ EEP → EEP → m EEP

A useful fact is that enter/exit pairs, in the presence of a monad capable of adding

edges, actually form a monoid under combineEnterExit. If a, b, and c are monadic

105

values which evaluate to enter and exit nodes of three separate CFG fragments, then

a <>b <>c is a monadic value which, when evaluated, connects a , b , c in sequence,

returning the enter and exit of the combined graph.

instance (MonadCfg m) ⇒ Monoid (m EEP)

mempty = return Nothing

ma <> mb = do a ← ma

b ← mb

combineEnterExit a b

We shall soon give the general interface for CFG generators, as a catamorphism whose

result is a stateful computation. One wrinkle is that values in the State monad do

not have the right type for use in a catamorphism. They must be modified to take an

extra sort parameter, which can be done by wrapping them with the K combinator.

type HState s a = K (State s a)

A downside is that using HState requires frequent unwrapping and rewrapping in

order to use the monad operations. We are now ready to give the final interface for

language-specific CFG-generators:

class (HFoldable f) ⇒ ConstructCfg f s where

constructCfg' :: f (HState s EEP) l → HState s EEP l

constructCfg :: (ConstructCfg f s) ⇒ Fix f l → State s ()

constructCfg t = void (unK (hcata constructCfg' t))

Open Products for Control Effects

Different control effects need different state. As we have shown in Section 2.7.2, break

and continue statements demand maintenance of a stack of break and continue targets.

Goto statements, meanwhile, demand a map of label names to targets. As languages

may have their own exotic control effects, there can be no common CFG-generation

state shared by all languages.

Our solution is to express the current CFG-generation state as an open product.

106

Open products permit the definition of functions which run on any state which has

a certain field. The generic constructCfgGoto case, for instance, runs on any state

that contains a map of goto labels to targets.

A common way to implement open products is with lenses [60]. A lens from a to

b is a pair of a getter a → b, which looks up a field of type b from a value of type a,

and a setter a → b → a, which replaces said field with a modified value.

type Lens a b = (a → b , a → b → a)

There are already many Haskell libraries for automatically generating lenses of this

type (or one isomorphic to it) [90, 92, 173]. We sweep under the rug which one is

used, and instead use the pseudocode magicMakeLens to denote the proper invocation of

whichever library. We can now define the state needed for each kind of control effect:

the current graph and an node-ID generator for general CFG-construction, a stack of

break targets for loops, and a goto-label map for goto statements.

type NodeGen = Int

data CfgGenState = CfgGenState { curGraph :: Graph

, nodeGen :: LabelGen }

class HasCfgGenState s where

cfgGenState :: Lens s CfgGenState

class (HasCfgGenState s) ⇒ HasBreakStack s where

breakStack :: Lens s [CfgNode]

class (HasCfgGenState s) ⇒ HasGotoMap s where

gotoMap :: Lens s (Map String CfgNode)

We are now able to define language-agnostic CFG construction functions for all rele-

vant statements, similar to the examples in Section 2.7.2.

constructCfgIf :: (HasCfgGenState s)

⇒ HState s EEP i → HState s EEP j

107

→ HState s EEP k → HState s EEP l

contsructCfgBreak :: (HasBreakStack s) ⇒ HState s EEP l

constructCfgWhile :: (HasBreakStack s)

⇒ HState s EEP i → HState s EEP j → HState s EEP k

constructCfgGoto :: (HasGotoMap s) ⇒ String → HState s EEP l

constructCfgGotoLabel :: (HasGotoMap s) ⇒ String → HState s EEP l

Of note is that, for forward-gotos, constructCfgGoto must allocate a CFG node for the

GotoLabel statement before it is seen.

Dispatching with Easy Cases

Most AST nodes have no interesting control-behavior. In this subsection, we define

a way to deal with the common cases without writing any custom code.

We group these non-interesting nodes into three categories, discriminating by

sort. Computation sorts describe those nodes which have control flow. These AST

nodes will be given their own CFG nodes. Suspended-computation sorts, abbreviated

“suspend sorts,” are those nodes whose bodies may have control flow, but which should

be in a separate contour, not connected to the CFG nodes of the surrounding context.

Lambda expressions are a typical example. Finally, all other sorts are considered to

not participate in the computation. For a node n of such a sort, its children, if any

exist, will be sequenced and connected to the surrounding CFG nodes, as if n did not

exist.

We define type families to specify these categories. For each language signature f,

ComputationSort f returns the computation sorts for that language as a type-level list,

and similar for suspend sorts. It is then possible to implement dynamic checks to see

if a term is of a computation sort, using standard type-level programming techniques.

type family ComputationSorts (f :: (∗ → ∗) → ∗ → ∗) :: [∗]

type family SuspendSorts (f :: (∗ → ∗) → ∗ → ∗) :: [∗]

108

isComputationSort :: Fix f l → Bool

isSuspendSort :: Fix f l → Bool

As a preview, here are the definitions for ImpSig.

type instance ComputationSorts ImpSig = '[ExpL, StmtL, [StmtL]]

type instance SuspendSorts ImpSig = '[LambdaL, FunDefL]

Note that. as Imp has no expressions with interesting control-flow (e.g.: short-

circuiting operators), simply removing ExpL from the list of computation sorts would

change the CFG-generator definition to instead produce statement-level CFGs. We

intentionally include [StmtL] in the list of computation sorts, giving ConsF nodes their

own CFG nodes, as this will be useful when building the CFG-based inserter.

We now turn to defining the generic cases, beginning with the case for computa-

tion sorts. Thanks to our careful definitions of HState and the monoid instance for

enter/exit pairs, the hfold function will run and sequence all children. The remainder

of this function allocates CFG nodes for the current term, and connects them to the

children.

constructCfgCompSort :: (HFoldable f)

⇒ f (HState s EEP) l → HState s EEP l

constructCfgCompSort t = K do

(enter, exit) ← makeEnterExit

let left = return (Just (enter, enter))

let body = hfold t

let right = return (Just (enter, enter))

left <> body <> right

Notice also what happens when there are no children: body evaluates to Nothing, and

the final line simply connects enter to exit.

The final definition of constructCfgDefault dispatches on the sort of a term. For

suspend sorts, it sequences the CFGs of all children, but returns an empty enter/exit

pair, so that nothing will connect to the children. For non-computation nodes, it

sequences the CFGs of the children and returns them

109

constructCfgDefault :: (HFoldable f)

⇒ f (HState s EEP) l → HState s EEP l

constructCfgDefault t =

if isComputationSort t then

constructCfgCompSort t

else if isSuspendSort t then

K (hfold t >> return Nothing)

else

K (hfold t)

Notice that, when t is IntType or BoolType, constructCfgDefault t has no effects and

evaluates to K Nothing. Notice also how it handles terms of sort [StmtL] (it sequences

them, also creating CFG nodes for the ConsF and NilF nodes) and terms of sort [FunDefL]

(it runs them independently).

Victory

We now give full source code for the CFG generator for Imp, validating our claim

to construct a CFG-generator for it in only 19 lines of language-specific code. In

fact, there are only 18 non-empty lines in the example below. Not shown is the code

to generate lenses in whichever library is chosen; in Edward Kmett’s lens library

[92], this would be a 1-line Template Haskell invocation, makeLenses ′ ′ ImpSigCfgState,

yielding our final count of 19 lines.

type instance ComputationSorts ImpSig = '[ExpL, StmtL, [StmtL]]

type instance SuspendSorts ImpSig = '[LambdaL, FunDefL]

data ImpSigCfgState = { breakStack :: [CfgNode]

, gotoMap :: Map String CfgNode

, cfgGenState :: CfgGenState }

instance HasBreakStack ImpSigCfgState where

breakStack = magicMakeLens

110

instance HasGotoMap ImpSigCfgState where

gotoMap = magicMakeLens

instance HasCfgGenState ImpSigCfgState where

cfgGenState = magicMakeLens

instance ConstructCfg ImpSig ImpSigCfgState where

constructCfg' (While e s) = constructCfgWhile e s

constructCfg' (If e s1 s2) = constructCfgIf e s1 s2

constructCfg' Break = constructCfgBreak

constructCfg' (GotoLabel s) = constructCfgGotoLabel s

constructCfg' (Goto s) = constructCfgGoto s

constructCfg' t = constructCfgDefault t

With this code, one can now run constructCfg t for any Imp program t and obtain a

control-flow graph.

The brevity of this example came in part because this language has no “unusual”

nodes: each node either fits one of the defaults, or is a common control-flow construct

for which it is reasonable to place the behavior in a language-agnostic function. In

Cubix, we implemented CFG-generators for 5 real languages, all of which did have

“unusual” nodes requiring custom code. Yet they also all benefited greatly from the

predefined common cases, For JavaScript, for instance, we were still able to define a

complete CFG-generator passing an exhaustive test suite in only 79 lines of language-

specific code, compared to 184 distinct node types.

2.7.4 CFG-Based Program Transformation

In this subsection, we explain our new transformation primitive, CFG-based insertion.

The code in this subsection involves more algorithmic details and bookkeeping com-

pared to that of the subsections on modular CFG-generation. Consequently, whereas

the code in those previous subsections would run verbatim except for their use of

lenses, the code in this subsection tends slightly more towards pseudocode.

The goal of this subsection is to define the dominatingPrepend operation. The in-

111

vocation dominatingPrepend targ s modifies the program to ensure that s always runs

before targ by inserting s at the first possible predecessor along every control path.

dominatingPrepend :: (InsertAt f l) ⇒ Fix f i

→ Fix f l

→ CfgInsertion ()

There are many variants of this operation which we do not present here. Aside from

the obvious dominatingAppend, which would instead ensure s runs after targ, there are

variants in how to behave if multiple insertions are performed at the same point, and

variants that can choose to treat each insertion point differently (to e.g.: only declare

a temporary variable once).

The dominatingPrepend operation rests on both the presence of a CFG and the

InsertAt interface. The InsertAt interface provides the twin operations of “is it possible

to insert this node at this point” and of performing the actual insertion. The utility of

this interface is that it describes both the mundane operation of inserting a statement

into a list of statements as well as more peculiar ones which cleave open a statement

to insert another.

A program point is identified by an AST node and an evaluation point ; these shall

also correspond to CFG nodes. Most AST nodes only have two evaluation points:

before (Enter) and after (Exit) it executes. But a few, such as Python if-elif-elif-

...-else chains, also have intermediate evaluation points (they correspondingly have

more than two CFG nodes!). We will revisit this in Chapter 4, where we provide a

theoretical account of “program points” from first principles.

data EvaluationPoint = Enter | Exit | Intermediate Int

We now define the InsertAt interface. canInsertAt @l p targ returns whether a term of

sort l3 can be inserted to run at the program point defined by p and targ. Then the

code insertAt p s targ modifies targ to perform the insertion.

class InsertAt f l where

canInsertAt :: EvaluationPoint → Fix f i → Bool

3The @l argument is a Haskell explicit type parameter.

112

insertAt :: EvaluationPoint → Fix f l → Fix f i → Fix f i

In the previous subsection, it sufficed for demonstration to use raw integer labels as

CFG nodes, with no way to map between corresponding CFG and AST nodes. This

subection requires CFG nodes with a little bit more structure (as is the case in the

actual implementation), with the ability to map between AST and CFG nodes, where

each CFG node corresponds to an AST node / evaluation point pair. We shall also

need to refer to terms of unknown sort, which we do with the existential combinator

E: E (Fix f) refers to a term (Fix f l) for some unknown sort l.

data E f = forall i. E {unE :: f i}

type Graph f

type CfgNode f

evalPoint :: CfgNode f → EvaluationPoint

termFor :: CfgNode f → E (Fix f l)

predecessors :: CfgNode f → [CfgNode f]

nodeFor :: Graph f → EvaluationPoint → Fix f l → Maybe CfgNode

Note that nodeFor is not actually implementable as written, for it cannot distinguish

between identical terms at different program points. This does not substantively

alter our work, as it is possible to (as is actually done in Cubix) modularly add label

annotations via an alternate fixpoint operation

data FixLab f l = In (f (FixLab f l), Label)

but we choose to omit such bookkeeping from this presentation. An alternative version

uses paths from the root to identify unique subtrees.

We also define this helper function:

canInsertAtNode :: (InsertAt f l) ⇒ CfgNode f → Bool

canInsertAtNode n = canInsertAt @l (evalPoint n) (unE (termFor n))

We now begin to implement CFG-insertion. We shall demonstrate on a tiny

model of Python called Worm, capable of expressing the two special cases described

113

in Section 2.7.1.

data WormSig e l where

While :: e ExpL → e StmtL → WormSig e StmtL

Continue :: WormSig e Stmtl

IfElse :: e ExpL → e StmtL → e StmtL → WormSig e StmtL

IfElifElse :: e ExpL → e StmtL −− if

→ e ExpL → e StmtL −− elif

→ e StmtL −− else

→ WormSig e StmtL

−− other cases not shown

As we will need to construct new terms, as is customary with unfixed data types, we

shall define smart constructors as syntactic sugar.

iWhile :: Fix WormSig ExpL → Fix WormSig StmtL

→ Fix WormSig Stmtl

iWhile e s = In (While e s)

−− iContinue, iIfElse , etc not shown

We begin by defining InsertAt. This benefits from an operation to check the sort of a

term: isSort @StmtL t tests if t is a statement. If it passes, an actual implementation

would need to cast t to Fix f StmtL in order to use it; we gloss over this detail.

isSort :: Fix f i → Bool

instance InsertAt WormSig StmtL where

canInsertAt (Intermediate 0) _ (In (IfElifElse _ _ _ _ _)) = True

canInsertAt Enter _ t = isSort @StmtL t

canInsertAt − _ _ = False

insertAt (Intermediate 0) stmt (In (IfElifElse c1 S1 c2 s2 c3)) =

iIfElse c1 s1

(ConsF' stmt

(ConsF' (iIfElse c2 s2 s3)

114

NothingF '))

insertAt Enter stmt t | isSort @StmtL t = ConsF' stmt t

insertAt _ _ _ = error "Unreachable"

In the real implementation, most InsertAt cases are variants of inserting a statement

into a list of statements. In addition to this case for if-elif-else, other special cases

include replacing a singleton statement with a block, and splitting a Python with

(e.g.: inserting code between the calls to A() and B in with a as A (), b as B() :).

We now turn to the components of the implementation of dominatingPrepend. The

satisfyingBoundary function implements a standard graph algorithm which finds all

predecessors of a node which satisfy some predicate. When used with canInsertAt, it

locates the places at which to perform the insertion.

satisfyingBoundary :: Graph f → CfgNode f → (CfgNode f → Bool)

→ Set (CfgNode f)

satisfyingBoundary cfg start pred = go Set.empty start

where

go :: Set (CfgNode f) → Cfgnode f → Set (CfgNode f)

go seen x = if Set.member seen x then

Set.empty

else if pred x then

Set.singleton x

else

fold (map (go (Set. insert x seen))

(predecessors x))

Because this implementation runs on immutable trees, the function dominatingPrepend

must run in two phases: first marking the set of insertions to perform, and then

performing them. We define the monad to hold the necessary state:

data CfgInsertionState f l =

CfgInsertionState

{ pendingInsertions :: Map (CfgNode f) (Fix f l)

115

, cfg :: Graph }

type CfgInsertion f l = State (CfgInsertionState f l)

dominatingPrepend simply finds the insertion points and marks the intended insertion.

dominatingPrepend :: (InsertAt f l) ⇒ Fix f i

→ Fix f l

→ CfgInsertion f l ()

dominatingPrepend target item = do

state ← get

let curCfg = cfg state

let startNode = fromJust (nodeFor curCfg Enter)

let insertionPoints =

satisfyingBoundary curCfg startNode canInsertAtNode

let insertions =

Set.fold (Set.map (\node →Map.singleton node item)

insertionPoints)

puts (\s → s {pendingInsertions = insertions })

For performing the insertions, we assume a primitive rewriteAt. rewriteAt x t f finds

the subtree in t equal to x, and then rewrites it with f, returning an updated t. Similar

to the nodeFor function, a real implementation would require either labeled terms or

paths from the root.

rewriteAt :: Term f i → Term f j

→ (Term f i → Term f i) → Term f j

The final step loops over the intended insertions and performs them.

performInsertions :: (InsertAt f l) ⇒ Fix f i

→ Graph f

→ Cfginsertion f l ()

→ Fix f i

performInsertions t g m =

let initialState = CfgInsertionState Map.empty g

116

Table 2.6: Line and token counts of CFG-generators

Language Cubix
SLOC

Cubix
tokens Comparison Comp.

SLOC
Comp.
Tokens

C 168 1837 Clang* [142] 1158 7962
Java 107 1374 Polyglot [143] 573 3888

JavaScript 79 1181 ast-flow-graph [83] 400 2924
Lua 148 1522 None found N/A N/A

Python 110 1261 StatiCFG [34] 232 2525
Infrastructure 475 4814

Total 1087 11989 2463 17299
*C-relevant portions only

let insertions = pendingInsertions (execState m initialState)

Map.foldrWithKey

(\t ' node item →
let p = evalPointNode in

rewriteAt p (termFor node) t ' (insertAt p item))

t

insertions

2.7.5 Implementation

Within this subsection, the term “significant lines” refers to the number of lines in a

file after removing the file prologue (i.e.: import statements), comments/docstrings,

and blank lines. All line counts (SLOC) refer to significant lines.

Language-Modular CFGs We implemented CFG generation in the language-

modular style in Cubix, and built CFG-generators for C, Java, JavaScript, Lua, and

Python, along with a thorough test suite with over 3000 SLOC of unit tests, together

with 66 end-to-end tests, consisting of an input program and its full expected graph.

Even though most CFG-generation is performed by language-agnostic code, the unit

tests are language-specific, giving us high-confidence that our approach is flexible

117

enough to adapt to the peculiarities of each language while still saving substantial

labor.

Table 2.6 gives the size of the CFG generators built in Cubix. For each language,

we searched for a comparison CFG generator, restricted to those which build a CFG

from the original AST and not for an IR. We found comparison generators for all

languages except for Lua, after having searched for one in Lua static analysis tools

and in the source code of the Lua.org and LuaJIT implementations. We include CFG

construction code, but not code for the graph data type. We also report token counts,

computed by a lexer for the relevant implementation language, which tend to be more

robust than line counts.

This is an imperfect comparison in every way. The comparison CFG-generators

range in quality from “part of a major compiler” (Clang) to “visualization tool with

20 stars on Github” (ast-flow-graph). All of the Cubix generators are expression-

level, whereas all comparison generators except Polyglot are statement-level. On the

other hand, some of the comparison generators also do basic-block compression. We

also biased these counts against Cubix by including infrastructure for Cubix but

not the comparison generators; the relevant equivalents of Section 2.7.3 total 1659

SLOC and 12, 536 tokens across the 4 comparison generators. Finally, while they

are generally better than line counts, token counts are not known to be comparable

across languages.

Nonetheless, this table gives strong evidence that our approach provides substan-

tial labor savings compared to a single-language baseline lacking generic programming

techniques. Our combined generators take approximately 1100 lines compared to 2400

for the comparison generators— and this is excluding a comparison Lua generator.

And the per-language marginal cost is over 3x fewer lines — and would be even better

if we included each other generator’s infrastructure.

CFG-Based Insertion We implemented a CFG-based inserter in Cubix in 142

SLOC. We used it to implement the test-coverage and three-address code transforma-

tions described in Section 2.5.2 (with the test-coverage transformation being strictly

118

more complicated than the sanitization example in Section 2.7.1). These transforma-

tions attained full semantics-preservation as measured by compiler test suites totalling

over 5000 test files, as shown in Section 2.5.3.

2.8 Application: Semantic Code Search

In this section, we present the Yogo semantic code search tool, currently the largest

application of Cubix. Yogo addresses the common and commonly-intimidating task

of discovering all places in a codebase which perform some similar operation. For

instance, if a common idiom is discovered to have a bug, then all instances of that

idiom must be changed. Similarly, if there are many places in the codebase which

manually access a data representation, then changing the representation demands

not only locating all code which accesses the data structure, but also recognizing

which high-level operation they perform. While conventional code search is helpful in

identifying these locations, it is not enough; it can still miss a long tail of unexpected

variations of the common pattern.

For example, imagine an E-commerce app that represents the items in a shopping

cart as an unordered array with duplicates. The programmer wishes to find all code

that counts the frequency of a given item in the list, as part of some larger refactoring,

whether to replace all of them with a shorter or more efficient implementation of

frequency counting, or to switch to an alternate representation of shopping carts

altogether. Figures 2-26a and 2-26e show example code and a refactored version.

Although this is one of the simpler instances of this problem, finding all equivalent

code in a codebase is already hard, as the code sought may be interleaved with other

code (as in Figure 2-26c), and may be paraphrased via syntactic variation or different

approaches altogether (as in Figures 2-26b and 2-26d).

Abstracting Away Syntax How can a program recognize that the examples in

Figure 2-26 are all instances of the same pattern? This has long been the goal of

semantic code search (for recognizing a concept in a codebase), and the closely-related

119

count = 0
f o r a in cart :

i f a == item :
count += 1

use (count)

(a)

count = 0
f o r i in range (l en (arr)) :

i f itm != arr [i] :
cont inue

count += 1
use (count)

(b)

count = 0
f o r i in cart :

i f debug :
p r i n t (cart [i])

i f cart [i] == item :
count += 1

use (count)

(c)

count = 0
i = 0
whi le i < len (cart) :

i f cart [i] == k :
count += 1

i += 1
use (count)

(d)

use (cart . count (item))

(e)

Figure 2-26: Variations over the array frequency count pattern in Python

120

problem semantic clone detection (identifying semantically-similar code snippets in a

codebase). There are a wide range of code search tools intended for different purposes

(see [141] for a survey). In this work, we are concerned specifically with code searches

intended to help a programmer change a codebase, measured to be 16% of code

searches [149]. We specifically attack an extreme version of the problem, motivated

by large refactoring tasks, where every result returned is programmer time saved — or

a bug averted. In this extreme, the goal is to exactly match all instances of a semantic

concept within a single codebase. To do so, we are willing to spend computation on

the most powerful reasoning techniques available. Our results offer a search procedure

which is complete in semantic equivalence up to a set of graph-rewrite rules, and which

is embarrassingly parallel, able to query a 1.2 million line codebase in 2.5 hours using

30 machines.

Yogo: You Only Grep Once In this section, we present a new approach to

semantic code search based on dataflow equivalences, and our Yogo tool built on it.

Yogo takes as input the code to search, a library of pre-written rewrite rules, and a

high-level concept expressed as a dataflow pattern. Using a fusion of techniques from

Tate et al’s equality saturation [162] and the Programmer’s Apprentice [146], it is able

to recognize when a code fragment is equivalent to one of many implementations of

said concept.

From equality saturation, we borrow the Program Expression Graph (PEG) rep-

resentation. Like program dependence graphs, Program Expression Graphs ignore

statement ordering and can match patterns interleaved with other code. However,

they go further by representing all of a program’s semantics, including mutation and

loops, as pure data-flow. In doing so, it becomes possible to discover equivalent

fragments by applying low-level equations and rewrite rules, and then compactly rep-

resent all such equivalent fragments as a structure called an e-graph [123, 122, 49].

The result is an efficient procedure for discovering if a program contains a subprogram

equivalent to the search pattern. And, if the rules given to the system are sound, and

they only entail a finite number of equivalent programs, then the search procedure is

121

sound, and complete with respect to the rules. In our experiments, given the default

rewrite rules, Yogo’s search terminates in under 3 minutes for over 99% of methods.

From the Programmer’s Apprentice, we borrow the idea that high-level concepts

can be identified as dataflow patterns. Based on this idea, we can e.g.: create rewrite

rules that recognize many implementations of the concept of “iterating through a se-

quence.” A dataflow pattern for array frequency-counting can then use this concept

as a subnode, so that it may match any of the varieties of iteration in Figures 2-26

and 2-27. The same idea allows our approach to recognize when a program accom-

plishes the same goal through an alternate API, or even a different algorithm. With

this switch to high-level concepts, our technique can even abstract away language-

dependent features. The upshot is that, from a single query for array-count frequency,

Yogo can recognize not only all five Python variations in Figure 2-26, but also the

three Java variations in Figure 2-27.

And Yogo’s equational reasoning capabilities extend beyond code search. We

later extended Yogo with a mode for proving the equivalence of two functions, added

rudimentary support for C, and used it to prune equivalent programs in a program

induction benchmark set (Section 2.8.3).

This chapter presents an abridged explanation of Yogo, with an emphasis on its

raw capabilities and on its use of Cubix. Full details, including additional motiva-

tion and evaluation, are available in the paper [141] and accompanying tech report

[140]. Details on the equivalence checking mode are available in the aforementioned

benchmark paper [5].

2.8.1 A Run Through Yogo

In this section, we demonstrate using Yogo to search for a 1-dimensional bounds-

check equivalent to i < lo || i >= hi. Although small, this is already challenging.

Figure 2-28 shows 4 examples of bounds-checking code, including examples in both

positive and negated form, in both Java and Python, and including variants which

have no tokens in common with the given pattern.

To search for a bounds check, the user writes a query in Figure 2-30, using Yogo’s

122

i n t count = 0 ;
f o r (Item x : list)

i f (x == k)
count += 1 ;

use (count) ;

(a)

int count = 0;
for (i = 0; i < list.size(); i++)

if (list.get(i) == k)
count += 1;

use(count);

(b)

i n t count = Collections . frequency (list , k) ;
use (count) ;

(c)

Figure 2-27: Java variations of array frequency count

i f (x >= end | | x < pos) {
doSomething () ;

}

(a)

i f 10 <= x < 20 :
doSomething ()

(b)

boolean b = i >= left ;
i n t j = i ;
boolean c = j < right ;
i f (! (b && c)) {

doSomething () ;
}

(c)

i f (x >= rect . left ()) {
i f (x < rect . right ()) {

doSomething () ;
}

}

(d)

Figure 2-28: Example 1D bounds checks

123

Figure 2-29: The organization of the Yogo Search Tool and its deployment. The
system admin maintains a long-term library of rules and custom types (1), which
are reused in every search session (4). Then for each search session, the end-user
provides source files (2) and search patterns (3). The tool outputs match results to
the end-user (9).

DSL4. This query is a textual form of the dataflow graph pattern in Figure 2-31a.

The user then invokes Yogo, indicating the target language and files, the query,

and a standard library of rules.

./yogo java "general_rules.yogo,java_rules.yogo"

query.yogo *.java

The general rules library includes rules for reasoning about boolean and comparison

operators, such as the one in Figure 2-32, which implements De Morgan’s law 𝑎∨ 𝑏 =

¬(¬𝑎 ∧ ¬𝑏). The Java- and Python-specific rule libraries contain rules for reasoning

about language-specific constructs and APIs, and for mapping them into language-

generic concepts. For example, there is the Python rule giving the isomorphism

between (a <= b < c) and (a <= b and b < c)5. Over time, a small set of power-

users can add rules for reasoning about new libraries and domains, enabling a large

set of end-users to rapidly construct deep semantic queries. Figure 2-29 gives an

overview of how the two kinds of users interact with Yogo.

4Yogo’s DSL is more verbose than the concrete syntax to simplify parsing in the implementation.
This is not fundamental to the approach.

5The purely-functional PEG representation renders short-circuiting and duplication a non-issue,
at the cost that PEGs cannot always be mapped back into code.

124

During execution, Yogo constructs a Program Expression Graph for each method

under search. (Yogo only accepts intraprocedural queries.) It then runs its equality

saturation engine to turn that PEG into an equivalence graph on this PEG, or E-

PEG, which represents both the original method as well as all methods which can be

shown equivalent using the provided rules library.

For example, we illustrate how Yogo matches the query against the code snippet

x >= lo && x < hi. Yogo first translates this code into the PEG in Box 1 of Figure

2-31b. After matching the rule for De Morgan’s law, Yogo’s equality saturation

engine extends the PEG with the new nodes in Box 2, and adds the dashed equivalence

edge between the and and not. Finally, it matches and runs two rules witnessing both

directions of the equivalences ¬(𝑎 ≥ 𝑏) = (𝑏 < 𝑎), adding the nodes of Box 3. The

entire e-graph in Figure 2-31b now represents 5 variations of the original code.6 The

or node is equivalent to the search query, and hence Yogo returns a match, with the

query variable root bound to the or node.

Other rules in Yogo’s standard libraries give it the ability to reason about nested

conditionals, memory, and assignments. Using these rules, it can expand the four

programs of Figure 2-28 into E-PEGs that compactly represent the exponentially

large spaces of equivalent programs, and discover that all four of them contain a

1-dimensional bounds-check.

Of course, our worked example only shows Yogo reasoning about pure code, using

the classic techniques of e-graphs and congruence-closure [123, 122, 49]. In order to

scale to all the examples of Figure 2-28, Yogo must translate stateful code to a form

amenable to equational reasoning. The full paper [141] explains how Yogo leverages

E-PEGs [162] to handle stateful and loopy code, and the insights of the Programmer’s

Apprentice [146] to match high-level concepts rather than specific code.

6We’ll have more discussion in Chapter 3 about the ability of e-graphs to compactly represent large
sets of programs and its limitations in doing so, and how e-graphs are equivalent in expressiveness
to tree automata.

125

(de f s ea r ch bound−checking

(root <− (generic / binop : or
(generic / binop :< x lo)
(generic / binop :>= x hi))))

Figure 2-30: A search query for bounds-checking

𝑥 lo hi

< >=

or
(a)

𝑥 lo hi

>= <

and

1

not not

or

not

2
𝑥 lo hi

< >=

3

(b)

Figure 2-31: (a): PEG for the query in Figure 2-30. (b): E-graph representing 5 pro-
grams equivalent to x >= lo && x < hi, with nodes grouped by order of discovery.
Dashed lines are between equivalent nodes. Some nodes duplicated for clarity.

(d e f e q ru l e demorgan1

(generic / binop : and a b)
=>
(generic / unop : not

(generic / binop : or
(generic / unop : not a)
(generic / unop : not b))))

Figure 2-32: Yogo rule for one direction of De Morgan’s law

126

2.8.2 Implementation

Yogo is implemented in 900 lines of Clojure and 2700 lines of Haskell. The Haskell

portion, based on Cubix, defines translators from Python and Java to PEGs. The

Clojure portion defines a DSL for rewrite rules and queries, as well as an equality

saturation engine based on the Clara implementation of the Rete algorithm [59].

Yogo comes with 500 lines of generic rewrite rules, 200 lines of Java-specific rules, 200

lines of Python-specific rules, and 30 lines of C-specific rules. Yogo uses a heuristic

analysis based on method names for inferring method purity, e.g.: it assumes that

Java methods starting with “get” or “to” are pure.

Yogo also features an equivalence-checking mode. To check for equivalences

between functions, Yogo generates a single joint E-PEG containing both, assigning

each the same start state. It then reports two subprograms as equivalent if equality

saturation groups their return values in the same equivalence class.

2.8.3 Evaluation

In this subsection, we set out to prove Yogo’s ability to search real codebases and to

find paraphrases and discontiguous matches in multiple languages. We first present a

brief summary of our systematic study of 9 search patterns Section 2.8.3 on a corpus

of 3 codebases. As this evaluation involves artificial searches on small (under 60𝐾

LOC) codebases, we follow this with our case study on Oracle’s Graal project (Section

2.8.3), where a Yogo query discovered a bug in a 1.2M LOC codebase that had been

missed by a custom static analyzer designed for that exact class of bugs. We conclude

with a discussion of results from Yogo’s equivalence checking mode.

General Patterns, Multiple Codebases

As a test of Yogo’s generality and cross-language abilities, we developed 9 language-

and codebase-independent queries and evaluated them on 3 codebases. We present

our results briefly here. Full discussion is available in the dedicated Yogo paper [141]

and its accompanying technical report [140]. These experiments use only Java and

127

Table 2.7: Codebases searched, and number of time-outs

Methods Non-methods
Lang. Commit LOC Total TO Total TO

PyGame Python ad681aee 49k 2345 21 481 3
Cocos2D Python 9bb2808 53k 2876 2 1082 0

LitiEngine Java c188504 59k 3625 28 997 2

Table 2.8: The number of matches found for each search pattern and codebase.

Pattern Cocos2D PyGame LitiEngine

SP1. Bound checking 4 3 13
SP2. Squared 2D distance 8 8 10
SP3. Put-if-not-present 3 4 11
SP4. Frequency count 0 0 0
SP5. Time elapsed 1 20 1
SP6. Loop index 120 126 42
SP7. Dictionary iteration 17 6 9
SP8. MD5 hashing 1 1 0
SP9. File writing 8 7 0

Python, as Yogo’s C frontend was added later.

We first chose the 9 patterns, using a combination of author insight and a sys-

tematic methodology based on StackOverflow questions. The 9 patterns are listed

in Table 2.8. Because several of our patterns were geometric, and because game en-

gines tend to contain many interesting intraprocedural code snippets, we chose 3 game

engines as our codebases to analyze on: PyGame, Cocos2D, and LitiEngine. Informa-

tion about them is listed in Table 2.7. Using the Docker container for Yogo shipped

in the accompanying artifact, on one author’s computer, Yogo searched PyGame,

Cocos2D, and LitiEngine in 3.5, 1, and 4.5 hours respectively. We set Yogo to a

3-minute timeout. As shown in Table 2.7, Yogo timed out on fewer than 1% of

methods; note that Yogo can still find some matches even if the generated E-PEG

does not reach saturation. Table 2.8 gives the full results.

Here are a few example Yogo matching, demonstrating how it is able to find

matches in the presence of paraphrases, match discontiguity, and multiple languages.

• Figure 2-33 gives three examples of SP2, squared distance. Figures 2-33a and

2-33c use explicit power-of-2, while 2-33b uses self-multiplication. These para-

128

double distSq =
Math . pow ((a . getCenterX () − b . getCenterX ()) , 2)
+ Math . pow ((a . getCenterY () − b . getCenterY ()) , 2) ;

(a) LitiEngine (Java)

r e turn Math . sqrt (
(p1 . getX () − p2 . getX ()) ∗ (p1 . getX () − p2 . getX ())

+ (p1 . getY ()− p2 . getY ()) ∗ (p1 . getY ()− p2 . getY ())) ;

(b) LitiEngine (Java)

xdistance = left . rect . centerx − right . rect . centerx
ydistance = left . rect . centery − right . rect . centery
distancesquared = xdistance ∗∗ 2 + ydistance ∗∗ 2

(c) PyGame (Python)

Figure 2-33: Excerpts that match SP2 (squared 2D distance).

f o r n , k in enumerate (self . tileset) :
s = pyglet . sprite . Sprite (self . tileset [k] . image , y=y ,

x=x , batch=self . tiles_batch)
. . .

(a) Cocos2D (Python)

f o r (f i n a l Map . Entry<String , List<Consumer<Float>>> entry

: t h i s . componentReleasedConsumer . entrySet ()) {
f o r (f i n a l Consumer<Float> cons : entry . getValue ()) {

pad . onReleased (entry . getKey () , cons) ;
}

}

(b) LitiEngine (Java)

Figure 2-34: Excerpts that match SP7 (iterating over a map).

129

phrases are bridged by a Java-specific equality rule that rewrites the value of

Math.pow function call to a generic power operation and a language-generic equal-

ity rule that rewrites x * x to x ** 2, as well as the generic rules for local

variables.

• Figure 2-34 shows different way one can iterate over key-value entries of a map

(SP7). Although this required language-specific rules to understand iterating

over the key set vs the entry set of a map, we reused a lot of rules and abstrac-

tions from SP3 and SP4, which also involved maps and iteration, respectively.

As a result, SP7 is fairly concise, with only 5 node patterns.

More discussion is available in the full paper [141] and its accompanying technical

report [140], and the set of all matches is available in the accompanying artifact.

Graal Case Study

The GraalVM [183] is a Java VM and JDK built by Oracle designed to support

language-interoperability and ahead-of-time compilation. As its associated Java com-

piler, Graal, is itsef written in Java, the project contains 13 hand-written static an-

alyzers, built atop Graal’s own bytecode analysis infrastructure, to enforce coding

guidelines and catch bugs in the project. We determined that the buggy patterns

sought by 4 of these analyzers could be expressed as Yogo queries. We implemented

3 of these as Yogo queries, and verified they all caught the defects in past revisions

of Graal that inspired the corresponding analyzer. But, for one of these, we realized

that the Yogo query would naturally be more general than the existing analyzer,

opening the possibility that Yogo could detect new bugs in the codebase. And,

excitingly, this happened to be the one analyzer relevant to other codebases.

VerifyDebugUsage searches for several patterns akin to Debug.log("A: " + str) or

Debug.log("A: \%s", node.toString()). Code of these patterns all perform string com-

putations whose results are discarded when debug-logging is not enabled. These are

all minor performance bugs, but ones which the Graal team has aimed to eradicate

from their compiler. The preferred alternative is Debug.log("A: \%n", node), which

130

(d e f t r i g g e r plus−string−string

(e <− (generic / binop :+ s1 s2))
(rules /is−string s1)
(rules /is−string s2)
=>

(rules /is−string e))

(d e f t r i g g e r string−alloced−argument

(rules /obj−to−string arg)
=>

(rules /bad−debug−argument arg))

Figure 2-35: Extracts of query for incorrect debug usage

does no string computations unless debug-logging is enabled.

The VerifyDebugUsage analyzer is 330 lines,7 and works by manual tree-pattern

matching. We immediately noticed a limitation: it would fail to detect the tar-

get defect if there was indirection through temporary variables, as in the example

str = n.toString(); Debug.log("\%s", str); . However, Yogo by default treats such

a snippet as indistinguishable from its inlined version, Debug.log("\%s", n.toString()).

After identifying the opportunity, to help with our deadline, we outsourced the

remaining work to a programmer in India, Sreenidhi Nair. As evidence for Yogo’s

usablity, in 3 days, he learned the tool well enough to implement this query,

along with queries for the other Graal checkers. The debug-usage query is 69 SLOC of

Yogo DSL. Of these, 11 lines merely tag expressions as having type String, owing to

the lack of type information in Yogo’s current information, leaving 58 lines of actual

query code. Figure 2-35 gives extracts of this code, which uses Yogo’s support for

auxiliary facts to identify string expressions and to mark expressions as unsuitable

for use in debug-logging.

For testing, we inspected past commits which modified their checker to find in-

stances of the bug it was designed to catch. To avoid overfitting the query, the

programmer developing the query was told which commits and directories contained

instances of the buggy pattern, but was not shown the instances until after success-

7As of SHA 4ce223a1dc

131

i f (object i n s t an c e o f Node) {
Node node = (Node) object ;
String loc = GraphUtil . approxSourceLocation (node) ;
String name = node . toString (Verbosity . Debugger) ;
i f (loc != nu l l) {

debug . log ("Context obj %s (approx . l o c a t i o n : %s) " ,
name ,
loc) ;

} e l s e {
debug . log ("Context obj %s " , name) ;

}
}

Figure 2-36: Defect caught by Yogo but not custom checker.

fully detecting it with Yogo.

Although Graal has a 1.2 million line codebase, as Yogo runs on each method

independently, parallelizing this search was straightforward. The final run took 2.5

hours using 30 AWS instances (type c5n.xlarge). The search turned up many unin-

teresting true positives, such as defects in test code, which VerifyDebugUsage is not

configured to check. It also turned up one example which, while an instance of the

buggy pattern which should have been caught by their checker, was not an actual

defect, as it was wrapped by the condition if (log.isLoggable(Level.FINE)). Along

with these uninteresting-yet-correct matches, it also turned up one defect that could

not have been found by VerifyDebugUsage.

Figure 2-36 gives the buggy code, which VerifyDebugUsage missed because of the

indirection through nodeName. Our fix wrapped this code in a condition checking that

logging was enabled, and was accepted into the Graal codebase.8 And thus, a 60-line

Yogo query found a bug missed by a 330-line checker designed for that

exact purpose.

8https://github.com/oracle/graal/pull/1965/

132

Equivalence-Checking

6 months after the initial publication of Yogo, we were contacted by a group de-

veloping a new benchmark set of small programs for use in program induction and

meta-learning. They had been chopping mined functions into small “subprogram”

snippets, and were interested in using Yogo to prune semantically-duplicate pro-

grams. We agreed to build an equivalence-checking mode for Cubix and a limited C

frontend.

They first presented us with 13 challenge problems inspired by their corpus, in-

tended as hard examples for showing equivalence. Each such problem consists of

two short semantically-identical functions, and a third function which is syntactically

similar yet semantically distinct. Figure 2-37 gives two of the harder such problems,

one involving standard library functions, the other involving arithmetic.

We added 24 general and 6 Java-specific rules in order to handle these equivalences,

addressing both standard functions and arithmetic. For example, for Figure 2-37a, we

added rules to track whether a number is non-negative, a general concept of the abs

function, a a rule mapping the java.lang.Math.abs function to the generic abs function,

and a rule stating that the abs function is the identity on non-negative inputs. For

Figure 2-37b, we added more arithmetic rules, including ones for constant folding.

After adding these rules, we found that Yogo was successfully able to identify the

13 semantically-equivalent pairs when simultaneously fed the 39 functions from the

problems. As a caveat, this required turning on rules for associativity, which causes

equality saturation to not terminate due to an unsolved problem in e-graph saturation.

We wrote up a description of this problem at https://github.com/egraphs-good/egg/

discussions/60.

We next turned to finding equivalent programs in their real corpus, feeding Yogo

a set of programs of the same type signature that behaved the same on a small set

of random inputs. In our initial run, Yogo found 731 equivalence classes contain-

ing more than one subprogram; these 731 non-trivial equivalence classes total 2307

subprograms.

133

https://github.com/egraphs-good/egg/discussions/60
https://github.com/egraphs-good/egg/discussions/60

A full description of the benchmark set and Yogo’s role in its creation is available

in the corresponding paper [5].

2.9 Conclusion

Incremental parametric syntax fulfills a simple promise: when writing similar trans-

formations for multiple languages, they should be able to share code to the extent

the languages are similar. And we have delivered. In an age when even commercial

analysis and transformation tools rarely support multiple languages, a student re-

searcher was able to develop a prototype to solve the Facebook/Dropbox problem for

5 languages, write battle-tested CFG-generators for 5 languages in under 125 lines of

language-specific code on average, and develop the world’s most advanced semantic

code search tool for 3 languages.

We are the first to allow a single program to perform source-to-source transforma-

tions on multiple real languages while preserving the information of each. We believe

incremental parametric syntax solves a key problem in writing multi-language tools,

and greatly increases the cost/benefit ratio of doing so.

Work on Cubix is ongoing, with the framework now featuring a dedicated website,

high-quality tutorial materials, and a mailing list for users. We are working to bring

about the future of multi-language tools, and the world is listening.

For the tutorial, documentation, and full source code for Cubix, including the

RWUS suite, go to:

http://www.cubix-framework.com

134

http://www.cubix-framework.com

pub l i c i n t prob1a (i n t a , i n t b) {
a = Math . abs (a) + Math . abs (b) ;
r e turn a ;

}

pub l i c i n t prob1b (i n t a , i n t b) {
a = Math . abs (a) + Math . abs (b) ;
a = Math . abs (a) ;
r e turn a ;

}

pub l i c i n t prob1_decoy (i n t a , i n t b) {
a = Math . abs (a + b) ;
r e turn a ;

}

(a)

pub l i c i n t prob2a (i n t a , i n t b) {
b = b − a ;
b = b ∗ 2 ;
b = b /2 ;
r e turn b ;

}

pub l i c i n t prob2b (i n t a , i n t b) {
b = b − a ;
b = b ∗ 4 ;
b = b / 2 ;
b = b /2 ;
r e turn b ;

}

pub l i c i n t prob2_decoy (i n t a , i n t b) {
b = b − a ;
b = b /2 ;
r e turn b ;

}

(b)

Figure 2-37: Example triplets of functions fed to the equivalence-checker.

135

136

Chapter 3

ECTAs: Compact Spaces of Coupled

Terms

A general recipe for solving programming problems is to generate a large set of pro-

grams, and then pick the highest-scoring one. Since even small bounds admit astro-

nomically many possible programs, doing so requires simultaneously considering many

programs with shared commonalities. In that vein, enumerative program synthesis

has thrived in the past decade by using version space algebras [107, 135] to compactly

represent all programs in an exponentially-large space, while e-graphs have done the

same for rewriting-based optimizers [182, 163], deductive synthesis [121], and a cer-

tain kind of semantic code search [141]. We ourselves used this idea for code search in

our Yogo tool (Section 2.8), which efficiently searches an exponentially-large space

of programs equivalent to the input, searching for any that “score highly” by matching

the query.

Both VSAs and e-graphs are now known [134] to be equivalent to special cases

of tree automata, which have independently experienced a surge of interest in recent

years [2, 177, 178]. All three techniques embody a divide-and-conquer approach that

thrives when separate portions of a program may be chosen independently. They

falter when there are constraints in which portions may appear together.

137

E-graphs, VSAs, DFTAs: On subterms divided they stand, on subterms

united they fall. Consider representing the set of 9 terms 𝒯 = {𝑓(𝑔(𝑋), 𝑔(𝑌))}
where 𝑋, 𝑌 ∈ {𝑎, 𝑏, 𝑐}. In a rewriting-based optimizer or deductive synthesizer, this

might emerge by starting with 𝑓(𝑔(𝑎), 𝑔(𝑎)) and discovering the equalities 𝑎 = 𝑏 = 𝑐.

The corresponding e-graph is built by beginning with an AST for 𝑓(𝑔(𝑎), 𝑔(𝑎)) and

replacing 𝑎 with the equivalence class {𝑎, 𝑏, 𝑐}, resulting in the e-graph shown in Figure

3-1a. In an inductive synthesis domain like FlashFill [73] or other members of the

FlashMeta/PROSE suite [135], this might emerge by discovering that 𝑔(𝑎), 𝑔(𝑏), and

𝑔(𝑐) all give the same value, needed as inputs to 𝑓 to produce some final goal output.

These tools construct a version space algebra (VSA); either bottom-up, by applying 𝑔

to all constants and grouping by observational equivalence; or top-down, by inverting

𝑓 , seeking a value for its arguments, and finding that 𝑔(𝑎), 𝑔(𝑏), and 𝑔(𝑐) all suffice.

Figure 3-1b gives the resulting VSA. A third, lesser-known, representation is the tree

automaton. Figure 3-1c gives the deterministic finite tree automaton (DFTA) for the

same set. The DFTA associates each subterm with a state 𝑞, determining the state of

each term by matching its symbol and states of its children with a set of transitions.

Although the three representations are typically constructed differently, the similarity

in their final structure is striking; it is immediately apparent, for instance, how nodes

of the DFTA correspond to e-classes of the e-graph, and transitions (hyperedges) of

the DFTA correspond to the e-graph’s nodes. All three function similarly, and it

is now known that both VSAs and e-graphs are isomorphic to special cases of tree

automata. [134, 93]

These three approaches all compactly represent this space of 9 terms by ex-

ploiting how the choices for 𝑔(𝑋) and 𝑔(𝑌) may be made independently. The pic-

ture changes, however, when one instead considers the set of 3 terms of the form

𝒰 = {𝑓(𝑔(𝑋), 𝑔(𝑋))}, where 𝑋 ∈ {𝑎, 𝑏, 𝑐}. Now, the e-graph, shown in Figure 3-2,

cannot exploit the sharing at all, and can only represent the set by giving all three

terms. Though this set is a third the size of 𝒯 , the representation is nearly thrice

as large. The VSA and DFTA behave similarly. This problem occurs in Yogo as

well in a different way: while it derives much power from treating equivalent terms

138

f

g

a b c

E-class 3

E-class 2

E-class 1

(a) E-graph

f⋈

g⋈

a b C

U

c

(b) Version-space algebra

q1

a b c

q2

g

f

q3

(c) DFTA. Rectangles represent transitions.

Figure 3-1: Compact representations of 𝒯 . The numbered DFTA nodes correspond
to the numbered e-classes.

139

f

g

a

g

b

g

c

f f

Figure 3-2: E-graph for 𝒰 .

identically, it is also incapable of expressing a rule like 𝑓(𝑥, 𝑥) ⇒ 𝑔(𝑥) where the

copies of 𝑥 must be syntactically identical, not merely equivalent.

ECTAs to the rescue We propose using a new data structure, the equality-

constrained tree automaton (ECTA), for compactly representing and searching such

sets. ECTAs are tree automata extended with equality constraints. To construct an

ECTA representing the term set {𝑓(𝑔(𝑋), 𝑔(𝑋))}, one first constructs a tree automata

representing the set {𝑓(𝑔(𝑋), 𝑔(𝑌))}, and then adds a constraint implying 𝑋 = 𝑌 .

Rather than deal with named variables and their well-known complications, ECTAs

use a nameless representation referring to subterms by paths. In this case, the 𝑋 = 𝑌

constraint is encoded as the path constraint 0.0 = 1.0 on the root, i.e.: that the term

at path 0.0 (first child of the first child, named 𝑋 in the previous sentence) is equal to

the term at path 1.0 (first child of the second child, named 𝑌). The resulting ECTA

for 𝒰 is given in Figure 3-3, is identical to the DFTA for 𝒯 , Figure 3-1c, save for the

0.0 = 1.0 path constraint on the 𝑓 transition. Even on this tiny example, we see that

the ECTA greatly outperforms the e-graph in the amount of sharing obtained. And

yet it is still clear how to efficiently (and, for simply-constrained cases like this, in

time linear in the number of outputs) enumerate the represented terms, by selecting

a value of 𝑎, 𝑏, or 𝑐 on the left path and reusing it on the right.

Adding equality constraints expands the set of problems e-graphs/VSAs/tree au-

140

tomata can solve. While these constraints emerge directly when considering the set of

terms generated by a nonlinear rewrite system, they can also be used to encode many

other kinds of dependencies between terms, such as type unification in polymorphic

function applications , and staging constraints in multi-stage programming. Effec-

tively, whereas e-graphs/VSAs/tree automata construct spaces of terms as unions

and cross products of smaller spaces, ECTAs can also represent reduced products.

Thanks to this expanded vocabulary, ECTAs can express many problems outside the

reach of these other techniques, letting more problems be solved by a single optimized

ECTA library.

Tree automata have long been used to represent sets of terms in term rewriting

[45, 57, 64], and we are not the first to consider adding equality constraints to handle

nonlinear rewrites. In fact, in 1995, Dauchet introduced a data structure very similar

to our ECTAs called “reduction automata” [46] — and used them to prove the decid-

ability of a certain variant of first-order logic. Other prior work on constrained tree

automata (e.g.: [18, 19, 10, 11, 145]) similarly focus on worst-case complexity and

decidability results, and we have found no reference to these data structures being

used in a practical system in the 30 years since their introduction. Our work, in con-

trast, approaches them from the view of applications, in the process introducing both

low-level optimizations, high-level restrictions, and pragmatic algorithms for reducing

the search space and enumerating terms (Section 3.3).

3.1 Overview

We demonstrate performing type-directed synthesis based on polymorphic compo-

nents, which we dub the Hoogle+ domain after the main existing work in this area

[81], based on ECTAs and specifically the ecta library. Prior work encodes a problem

into Petri net reachability, searching only a single term at a time, bounds polymor-

phism, and cannot directly handle partial application. In contrast, the encoding

into ECTAs simultaneously searches for all terms, and seamlessly handles arbitrary

polymorphism and partial application. Thanks to this ability to directly encode the

141

0.0=1.0

q1

a b c

q2

g

f

q3

Figure 3-3: ECTA for 𝒰 .

problem into the ECTA constraint system, our implementation is under 400 lines, and

is competitive with the much-larger original Hoogle+ implementation, as shown in

Section 3.4.1.

Using either VSAs, e-graphs, or tree automata, it is easy to express the space of

all not-necessarily-well-typed terms. With ECTAs, we can further encode the well-

typedness constraint so that a generic fast enumeration procedure will find all well-

typed terms in the space. Figure 3-4b depicts on ECTA containing all such well-typed

terms; we incrementally describe the ideas used to construct it below. Notice first

the application constructor, called app, in the topmost hyperedge, which contains two

copies of the list of all available components ($), foldro, map, etc as children, indicating

that, before applying constraints, the space contains all components applied to any

other component. The root node hence will describe all well-typed terms of size 2.

Nodes describing all well-typed terms of sizes 3, 4, etc are then built using this node

as a potential input, and a node containing all terms upto size 𝑘 can be built as the

union of such nodes.

Our examples below deal extensively with the Haskell application function , which

serves as an example of multiple aspects of the ECTA encoding. The ($) operator

($) : (𝑎→ 𝑏)→ (𝑎→ 𝑏) is mostly used in Haskell as syntactic sugar to avoid nested

parentheses, so that one can write f $ g $ h $ x instead of f (g (h x)), but is also

useful in its own right, as in a Hoogle+ benchmark for applying a function 𝑛 times

142

to a given argument, foldr ($) x (replicate n g).

The basic idea of the encoding is to add an annotation to each term node giving its

type, which by convention we place at index 0 of all term (non-type) nodes. Equality

constraints on the application constructor app then enforce that types match. The

first set of constraints on the app constructor use equalities to enforce that the

type of the argument matches the argument type of the function, and that the overall

type of the app matches the return type of the function. We will explain momentarily

what positions 1 of the app constructor and 0 of the (→) type constructor are used for.

These two constraints are then 2.0.1 = 3.0 (argument type (child 1) of type (child 0)

of function (child 2 of the app) equals type (child 0) of the argument child (child 3 of

the app)), and 0 = 2.0.2 (overall type of the app (child 0) equals return type (child 2)

of the type (child 0) of the function argument (child 2 of the app)).

There is a problem with the above encoding: what if the component under consid-

eration does not have a function type (→), but a different binary type such as Either?

The constraints mentioned above would be satisfied by the application (𝐸𝑖𝑡ℎ𝑒𝑟12)3,

which is ill-typed. To express the constraint that the term in function position must

have a function type, there must be some extra child on the function type constructor

indicating that is a function type, as only these children are visible to the constraint

system. Our encoding adds extra hyperedges containing the symbol (→) to all func-

tion type constructors at position 0, depicted as the small side nodes in Figure 3-4b.

There is then an extra (final) constraint on the app transitions enforcing that the child

in function position indeed has a function type. This is done by adding that same (→)

symbol at position 1 of the app hyperedge, so that the constraint 1 = 2.0.0 requires

that the child in function position indeed have a function type.

We now turn to the handling of polymorphism. Our encoding expresses a polymor-

phic type such as (𝑎→ 𝑏)→ (𝑎→ 𝑏) as the type (Any→ Any)→ (Any→ Any) with

constraints on the top-level (→) that the corresponding Any’s must match: 1.1 = 2.1

(for the “a” variable) and 1.2 = 2.2 (for the “b” variable). This Any type can then be

written as a recursive ECTA node which contains the space of all valid types, depicted

in Figure 3-4a. When constrained to be equal to another polymorphic type, such as

143

qany

Maybe List

Int

…

→

(a)

$

→ 1.1=2.1
1.2=2.2

app
0=2.0.2
1=2.0.0
2.0.1=3.0

→

qany qany

(→)

(→)

qany

foldr map

(→)

… …

…

(b)

Figure 3-4: (a) Encoding the “Any” type in Haskell as a recursive ECTA node (b) An
ECTA for all well-typed Haskell programs of the form 𝑓(𝑔), where 𝑓 and 𝑔 are drawn
from a fixed set of components.

in the application foldr ($), where foldr : (𝑐 → 𝑑 → 𝑑) → 𝑑 → List 𝑐 → 𝑑, the app

constraints imply that both the 𝑐 and 𝑑 in foldr must be equal to 𝑎 → 𝑏, giving rise

to the result that unification is automata intersection.

This concludes the encoding of the Hoogle+ domain into ECTAs. We have now

explained everything in Figure 3-4. To synthesize terms of type 𝑋 → 𝑌 → 𝑍, one

simply constructs a similar ECTA adding terms of types 𝑋 and 𝑌 to the space of

available components, adds an extra constraint to the top node restricting the overall

return type to 𝑍, and then runs a generic enumeration procedure to synthesize terms

of the desired type 𝑋 → 𝑌 → 𝑍.

The encoding can be refine further with domain knowledge. For instance, we gave

an example where ($) was useful in argument position, foldr ($) x (replicate n g).

However, it is never useful in function position, as it is simply the identity function;

($ foldr) is equivalent to just foldr. We can modify the encoding so that ($) is elided

from the list of available components in the child of app nodes representing terms in

the function-position; doing so greatly reduces the size of the search space.

144

3.2 Basic Formalism

In this section, we introduce our basic mathematical formalism for ECTAs, along

with brief descriptions of their operations.

As explained in Section 3 and elaborated in , there are several variants of tree au-

tomata with equality and other constraints, though they have seen scarce application.

ECTAs are in fact a restriction of Dauchet’s reduction automata [46], introduced in

1995 to prove the decidability of first-order logic with a primitive for subsumption of

terms. ECTAs are identical to reduction automata except that reduction automata

also feature disequality constraints. This restriction is interesting because it admits

a static reduction operation (Section 3.2.3), which modifies the graph so as to reduce

the search space of terms which may satisfy the constraints, and overall gives rise to

efficient enumeration.

The formalism of this section is more general than the representation used by the

ecta library. This formalism presents ECTAs as a graph, with arbitrarily-many final

states and cycles (so long as the cycles contain no equality constraints). In Section

3.3, we introduce a second formalism which adds additional restrictions, but enables

more optimization.

3.2.1 Preliminaries

We first present standard definitions of signatures, terms, paths, the subpath relation,

and the prefix-free property. The only departure from other presentations is that

symbols do not come with an explicit arity.

We use Σ to denote a signature, defined as a set of symbols. If 𝒳 is a set of

variables, then the terms of Σ with variables 𝒳 is denoted 𝒯 (Σ,𝒳), and consists of

objects either of the form 𝑥 ∈ 𝒳 or 𝑠(𝑡𝑖), where 𝑡𝑖 is a (possibly-empty) list with each

𝑡𝑖 ∈ 𝒯 (Σ,𝒳) and 𝑠 is some “constructor” symbol. We abbreviate the set of closed

terms of Σ, 𝒯 (Σ,∅), as 𝒯 (Σ). We sometimes abbreviate nullary terms like 𝑎() as 𝑎.

A path 𝑝 ∈ 𝑃 is a list of integers 𝑖1.𝑖2.𝑖𝑘 ∈ N*. The empty path is denoted 𝜖.

The subterm of 𝑡 at path 𝑝, written 𝑡
⃒⃒
𝑝
, is inductively defined:

145

• 𝑡
⃒⃒
𝜖

= 𝑡

• 𝑠(𝑡0, . . . , 𝑡𝑘)
⃒⃒
𝑖.𝑝

= 𝑡𝑖
⃒⃒
𝑝

if 0 ≤ 𝑖 ≤ 𝑘, undefined otherwise.

For example, for 𝑡 = 𝑓(𝑔(𝑎), 𝑔(𝑏)), 𝑡
⃒⃒
0.0

= 𝑎 and 𝑡
⃒⃒
1.0

= 𝑏.

For paths 𝑝1, 𝑝2 ∈ 𝑃 , if ∃𝑖1, . . . , 𝑖𝑘 ∈ N* such that 𝑝1 = 𝑝2.𝑖1 . . . 𝑖𝑘, then 𝑝1 is a

subpath of 𝑝2. If 𝑘 > 0, 𝑝1 is a strict subpath of 𝑝).

A set 𝑃 of paths is prefix-free if there are no 𝑝1, 𝑝2 ∈ 𝑃 such that 𝑝1 is a strict

subpath of 𝑝2.

3.2.2 Equality-Constrained Tree Automata

We now build the definition of the main data structure of this chapter, ECTAs.

ECTAs are identical to ordinary tree automata as defined in e.g.: [177, 35], except

that certain transitions are equipped with a set of constraints called “path equivalence

classes” (PECs), each restricting a set of subterms to be mutually equal. We first

present PECs.

Definition 3.2.1 (Path Equivalence Classes (PECs)). A path equivalence class 𝑐 ∈
PEC ⊆ P(𝑃), is a prefix-free set of paths. We write a PEC {𝑝1, 𝑝2, . . . , 𝑝𝑘} as {𝑝1 =

𝑝2 = · · · = 𝑝𝑘}.

Definition 3.2.2 (Satisfaction of a PEC, Value at a PEC). A path equivalence class

𝑐 = {𝑝1 = · · · = 𝑝𝑘} is satisfied on term 𝑡 if there is some 𝑡′ such that, ∀𝑝𝑖 ∈ 𝑐, 𝑡
⃒⃒
𝑝𝑖

= 𝑡′.

We write 𝑐(𝑡) if this condition holds, and 𝑡
⃒⃒
𝑐

to denote this unique 𝑡′.

Definition 3.2.3 (Path Constraint Sets, Satisfaction, Consistency). A path con-

straint set 𝐶 = {𝑐1, . . . , 𝑐𝑘} is a set of path equivalence classes. Term 𝑡 satisfies path

constraint set 𝐶, written 𝐶(𝑡), if ∀𝑐 ∈ 𝐶, 𝑐(𝑡). If there exists a 𝑡 such that 𝐶(𝑡), then

𝐶 is consistent; otherwise, it is inconsistent.

An example of an inconsistent path constraint set is {{0 = 1.0}, {0.0 = 1}},
which corresponds to unifying e.g.: the expression 𝑓(𝐴, 𝑔(𝐴)) with 𝑓(𝑔(𝐵), 𝐵), which

generates the contradictory constraints 𝐴 = 𝑔(𝐵) and 𝐵 = 𝑔(𝐴).

146

1

1 2

1 2

1 2

2 1

2

2

1

1

(a)

1

1 2

12 2

1

(b)

Figure 3-5: (a) E-graphs for the PECs {1.1 = 2.1}, {1.2 = 2.2}, and {1 = 2.1 =
2.2.1}, corresponding to the types ($) : (𝑎 → 𝑏) → (𝑎 → 𝑏) and pairToList : 𝑎 →
𝑎 → [𝑎] (b) The congruence-closure of the e-graphs in (a), showing that it contains
the contradictory PEC {1.1 = 1 = 2.1 = 2.2.1}

Although ECTAs generalize e-graphs, they actually contain e-graphs as a sub-

component: a path constraint set can be completed using the congruence closure

algorithm used in e-graphs [123], meaning that the constituent PECs are merged and

extended to explicitly contain all equalities implied by the path constraint set. Figure

3-5 gives an example set of PECs as e-graphs, and illustrates using congruence closure

to compute the combined PEC set, finding an inconsistency.

It turns out that a path constraint set is consistent if and only if each PEC is

prefix-free after completion.

Theorem 3.2.4. Let 𝐶 = 𝑐𝑖 be a completed set of PECs. Then 𝐶 is inconsistent if

and only if one of the 𝑐𝑖 is not prefix-free.

Proof. It is easy to see that a non-prefix-free PEC is inconsistent.

147

For the reverse direction, we shall show that if each of the 𝑐𝑖 are prefix-free, then

𝐶 is consistent. Consider 𝑐1, 𝑐2 ∈ 𝐶, and define 𝑐1 ⊑ 𝑐2 if ∃𝑝1 ∈ 𝑐1, 𝑝2 ∈ 𝑐2 such

that 𝑝1 is a subpath of 𝑝2. We show that ⊑ is a partial order. Reflexivity and

transitivity are trivial. For anti-symmetry: suppose 𝑝1, 𝑝3 ∈ 𝑐1 and 𝑝2, 𝑝4 ∈ 𝑐2 with

𝑝1 a subpath of 𝑝2, 𝑝4 a subpath of 𝑝3. If 𝑐1 = 𝑐2, we are done; otherwise, we must

have 𝑝1 ̸= 𝑝2 and 𝑝3 ̸= 𝑝4 by completeness of 𝐶. We can thus write 𝑝2 = 𝑝1.𝑝
′
2,

𝑝3 = 𝑝4.𝑝
′
3 for some 𝑝′2, 𝑝

′
3 ̸= 𝜖. By completeness of 𝐶, it follows that 𝑐1 contains

𝑝1 = 𝑝3 = 𝑝4.𝑝
′
3 = 𝑝2.𝑝

′
3 = 𝑝1.𝑝

′
2.𝑝

′
3, which would mean that 𝑐1 is not prefix-free.

Thus, ⊑ is a partial order.

Because 𝐶 can be topologically sorted by ⊑, it is trivially possible to construct a

term 𝑡 such that 𝐶(𝑡) by inductively choosing a term for each successive minimal 𝑐𝑖.

Thus, if each of the 𝑐𝑖 are prefix-free, 𝐶 is consistent.

Having developed path constraint sets, we now define ECTAs. We also introduce

the restriction against constraints on cycles, which is necessary for the fast enumera-

tion algorithm of Section 3.3.3 to terminate, and, indeed, for decidability.

Definition 3.2.5 (Equality-Constrained Tree Automata (ECTA)). We define an

equality-constrained tree automaton 𝒢 ∈ ECTA to be a tuple (𝒬,Σ,𝒬𝑓 ,∆) where 𝒬
is a set of states, Σ a signature, 𝒬𝑓 ⊆ 𝒬 a set of final states, and ∆ ∈ Σ × 𝒬* ×
P(𝑃𝐸𝐶) × 𝒬 is a set of constrained transitions (a.k.a.: hyperedges). Further, there

may be no cycle containing an equality constraint, i.e.: if there is a sequence of tran-

sitions 𝑠1(. . . , 𝑞0, . . .)
𝐶1−→ 𝑞1, 𝑠2(. . . , 𝑞1, . . .)

𝐶2−→ 𝑞2, . . . , 𝑠𝑘(. . . , 𝑞𝑘−1, . . .)
𝐶𝑘−→ 𝑞0, then

all of the 𝐶𝑖 must be equal to ∅.

Remark 3.2.6. The restriction against equality-constraints on a cycle is also present

in Dauchet’s reduction automata [46] as necessary to make finding a represented term

decidable, although it is phrased there in terms of an ordering on states.

Example 3.2.7. The ECTA of Figure 3-3 is given by (𝒬,Σ,𝒬𝑓 ,∆) where:

148

𝒬 = {𝑞1, 𝑞2, 𝑞3}

Σ = {𝑎, 𝑏, 𝑐, 𝑓, 𝑔}

𝒬𝑓 = {𝑞3}

∆ =
{︁
𝑎()→ 𝑞1, 𝑏()→ 𝑞1, 𝑐()→ 𝑞1, 𝑔(𝑞1)→ 𝑞2, 𝑓(𝑞2, 𝑞2)

{{0.0=1.0}}−→ 𝑞3

}︁

A term 𝑡 = 𝑠(𝑡𝑖) transitions to a state 𝑞 if there is a transition 𝑠(𝑞𝑖)
𝐶→ 𝑞, each

𝑡𝑖 transitions to 𝑞𝑖, and 𝐶(𝑡). The denotation of an ECTA is then the set of terms

which transition to a final state.

A run is a mapping from the positions of a term to the states of an ECTA which

is compatible with the transition relation. The skeleton of an ECTA is the tree

automata obtained from an ECTA 𝐺 by removing all path constraints. A spurious

run of 𝐺 is a run of the skeleton of 𝐺 which is not a run of 𝐺.

Analogously to nondeterministic string automata, union of ECTAs may be defined

as a union of states and transitions, while intersection may be defined using a product

construction, in which the constraint sets of intersected edges are conjoined. We defer

detailed discussion of these topics to the development of our optimized/restricted

formalism in Section 3.3.

3.2.3 Static Reduction

ECTAs are a type of constrained automata where the only available constraints are

path equalities. All other kinds of constraints must be encoded into equalities. This

restriction comes with several advantages for fast enumeration. We now present the

first: static reduction, or using automata intersection to reduce the number of spurious

runs.

Consider Figure 3-6. Though it represents only 3 terms, the skeleton of the ECTA

in Figure 3-6a admits 12 runs. The ECTA in Figure 3-6b, in contrast, represents the

same 3 terms, but its skeleton admits only 6 runs. This suggests that enumeration will

149

be faster for the ECTA in Figure 3-6b. This ECTA is the output of static reduction

of the 0.0 = 1.0 constraint. Static reduction of a PEC removes all transitions at the

end of a path in the constraint except those which match a transition along the other

paths in the constraint.

For an edge 𝑒 in an ECTA, the the set of nodes from 𝑒 at path 𝑝 = 𝑖1 . . . 𝑖𝑘,

𝑒
⃒⃒
𝑝
, is defined as the set of nodes obtained from first finding the 𝑖1th child of 𝑒 𝑛1,

then taking the 𝑖2th children of edges into 𝑛1, etc. A PEC 𝑐 = {𝑝1 = · · · = 𝑝𝑘}, is

then reduced by intersecting each node at 𝑝1 with the intersection of the nodes at

𝑝2, . . . , 𝑝𝑘, and repeating likewise for the nodes at 𝑝2, etc. We give a formal definition

in Section 3.3.2, as the algorithm requires stating a definition of intersecting ECTA

states (as opposed to entire ECTAs), which we have not done here.

3.3 Optimized Formalism and Implementation

The formalism of Section 3.2 is simple and slow. It gives a representation as an

arbitrary graph, which hinders the most important optimization (memoization), and

it suggests no enumeration algorithm other than brute-force. Turning this into an

ECTA library capable of strong performance on a wide range of applications will

require more than low-level optimizations. In this section, we explain the algorithmic,

representational, and optimization insights behind the ecta library, culminating in

the fast, flexible enumeration algorithm of Section 3.3.3,

We have implemented this optimized formalism along with lower-level optimiza-

tions in our ecta library. ecta comes with implementations of the applications

in Section 3.4, as well as a program which reduces boolean satisfiability to ECTA

enumeration, which functions both as a proof of NP-hardness and a testbed for ob-

serving its behavior when faced with a high ratio of constraints to nodes. It contains

approximately 3000 lines of implementation and 600 lines of tests. The core of ecta

is approximately 1900 lines, including its processing of ECTAs, path constraints, and

terms, and the GraphViz-based visualizer for ECTAs. Slightly over 1300 lines are

spent on applications, and the rest on its miscellaneous libraries.

150

0.0=1.0

q4

a b

q2

g

f

q1

h

q5

b c

q3

g

q6

b c d

(a)

0.0=1.0

q4

b

q2

g

f

q1

h

q5

b

q3

g

q6

bc c

(b)

Figure 3-6: (a) A non-minimal ECTA representing
{𝑓(𝑔(𝑏), 𝑔(𝑏)), 𝑓(ℎ(𝑏), 𝑔(𝑏)), 𝑓(ℎ(𝑐), 𝑔(𝑐))} (b) This same ECTA after reducing
the constraint 0.0 = 1.0. In particular, every leaf is used in at least one term.

151

3.3.1 Pseudo-Tree ECTAs and the Globally-Unique Recursion

Restriction

We first address the representation of ECTAs used by the ecta library. Our goal is to

produce a representation amenable to memoization and sharing, which requires that

operations be defined on portions of an ECTA rather than an entire ECTA. Though

ECTAs are graphs, this is much more easily done with a DAG or tree structure.

We thus introduce pseudo-tree ECTAs, which presents an ECTA as an AST, along

with an additional restriction that enables high-performance treatment of recursive

references (i.e.: back-edges).

How does one treat a graph as a tree? The first step is to choose a root; since every

ECTA is equivalent to an ECTA with only one final state, this step is trivial. After

that, following edges away from the root will immediately give a tree-like structure if

the graph is acyclic; this is well-known, and was exploited by e.g.: previous implemen-

tations of version space algebras [135]. Oliveira and Cook’s “structured graph” repre-

sentation [127] goes further in allowing arbitrary graphs to be manipulated through

a tree-like interface. It does this by using (parametric) higher-order abstract syn-

tax [27] to represent explicit recursive 𝜇 nodes in graphs, so that e.g.: the graph

𝐴→ 𝐵 → 𝐶 → 𝐴 would be represented as the pseudo-tree Mu(𝜆𝑥.𝐴(𝐵(𝐶(𝑥)))).

We considered using the structured graph representation, but decided against it

for performance reasons: without the ability to inline functions at runtime, every

modification to the body of a Mu node would be represented in memory as a chain of

function compositions which must be evaluated anew each time a concrete node must

be extracted. In particular, we predicted that repeatedly intersecting ECTAs would

create such composition chains of arbitrary length. A related alternative solution

is to have explicit Mu nodes whose bodies are ECTAs containing bound variables,

replacing the problem of performance with that of dealing with binders, which is

especially difficult when subterms are shared.1 These and other approaches share

the common theme of treating a graph as a DAG where certain nodes are marked as

1An algorithm for hashing modulo alpha-equivalence [115] was published during the development
of ecta, which suggests a new approach for sharing subterms with named variables.

152

recursive Mu nodes that may be the target of backedges from their child subgraphs.

However, we realized during development that most applications under considera-

tion only deal with finite spaces of terms and hence do not require recursive nodes at

all. The main application we conceived where recursive nodes would be useful was the

Hoogle+ domain, where a polymorphic variable may be instantiated to an arbitrary

type, and hence a recursive node representing an unrestricted arbitrary type would be

useful. This inspired us to introduce the globally-unique recursion restriction:

in any execution containing a sequence of ECTA operations, the combined ECTAs

must have at most one globally unique recursive node. While this may sound unduly

restrictive at first glance, it actually means that an application may only enumer-

ate from one distinct infinite space of terms along with many finite spaces, which is

effectively a very weak restriction.

One caveat is that, in the case where the body of the globally-unique Mu node

contains multiple nodes, the intersection algorithm of Section 3.3.2 must use least-

fixed-point semantics to avoid infinite unrolling. However, the encoding of an arbi-

trary term in a DSL requires at most one distinct node per sort. (There would be,

in contrast, many hyperedges, one per constructor.) As none of the potential appli-

cations we have encountered involve a multi-sorted DSL, we do not presently foresee

this case actually arising in applications, and thus we have not implemented this case

at time of writing.

Definition 3.3.1 (Pseudo-Tree ECTA). A pseudo-tree ECTA is a DAG 𝑁 given by

the grammar

𝑁 ::= Node(𝐸) | Mu(𝑁) | Rec (Nodes)

𝐸 ::= Edge(symbol, 𝑁,PEC) (Edges)

where subterms have maximal sharing, and subject to the constraints that

• There is at most one globally-unique Mu node: If Mu(𝑁1) and Mu(𝑁2) appear

153

in any two ECTAs under consideration, then 𝑁1 = 𝑁2.

• All Rec nodes are descendants of Mu nodes.

• No constraints appear under a Mu node: if Edge(𝑠, 𝑛, 𝑐) is a descendant of a

Mu node, then 𝑐 = 𝜖.

• No constraints on nodes under a Mu node: For any edge 𝑒 = 𝐸𝑑𝑔𝑒(𝑠, 𝑛, 𝑐), if 𝑐

contains the path 𝑝, then no node at 𝑒
⃒⃒
𝑝

may be a descendant of a Mu node.

Their denotation is:

J·KN : N→ P(Term)

JNode(𝑒𝑖)KN =
⋃︁

J𝑒𝑖K

JMu(𝑛)KN = J[Mu(𝑛)/Rec]𝑛K

J·KE : E→ P(Term)

JEdge(𝑠, 𝑛𝑖, 𝑐𝑗)KE =
{︁
𝑠(𝑡𝑖)

⃒⃒
⃒𝑡𝑖 ∈ J𝑛𝑖K,∀𝑐𝑗.𝑐𝑗(𝑠(𝑡𝑖))

}︁

where [Mu(𝑛)/Rec]𝑛 denotes substituting Mu𝑛 for Rec in all descendants of 𝑛.

Optimizations

In the ecta library, all nodes, hyperedges, and symbols are shared by hash-consing.

After finding existing Haskell hash-consing libraries insufficiently performant, we built

our own using mutable hashtables. To improve sharing, each node is normalized by

sorting its children and removing duplicates. Path equivalence classes are represented

using a trie. The restriction that no path constraint may refer to a term under a Mu

node is not strictly enforced, but rather implemented by lazy unfolding.

154

3.3.2 ECTA Operations: Union, Intersection, and Reduction

On top of the ease of memoization, tree-like data structures tend to admit simple re-

cursive algorithms. We present definitions of union, intersection, and static reduction

of pseudo-tree ECTAs.

Union

The union of two pseudo-tree ECTA nodes is trivial: a node containing the edges of

both.

Definition 3.3.2 (Union). Let 𝑛1 = Node(𝐸1), 𝑛2 = Node(𝐸2). Then define

𝑛1 ∪ 𝑛2 = Node(𝐸1 ∪ 𝐸2)

Intersection

Let Closure(𝐶) denote the congruence closure of path constraint sets as described in

Section 3.2, with Closure(𝐶) = ⊥ if 𝐶 is found to be inconsistent using the criterion

of Theorem 3.2.4. We now present a mutually-recursive definition of the intersection

of pseudo-tree ECTA nodes and edges.

Definition 3.3.3 (Intersection). Let 𝑒1 = Edge(𝑠1, 𝑛1𝑖, 𝐶1), 𝑒2 = Edge(𝑠2, 𝑛2𝑖, 𝐶2).

Then we define 𝑒1 ∩ 𝑒2 of type E ⊔ UndefinedEdge as

𝑒1 ∩ 𝑒2 =

⎧
⎪⎨
⎪⎩

Edge(𝑠1, 𝑛1𝑖 ∩ 𝑛2𝑖,Closure(𝐶1 ∪ 𝐶2)) 𝑠1 = 𝑠2 ∧ Closure(𝐶1 ∪ 𝐶2) ̸= ⊥

UndefinedEdge otherwise

Let 𝑛1 = Node(𝐸1), 𝑛2 = Node(𝐸2). Then

𝑛1 ∩ 𝑛2 = Node
(︁{︁

𝑒1 ∩ 𝑒2

⃒⃒
⃒𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝑒2, 𝑒1 ∩ 𝑒2 ̸= UndefinedEdge

}︁)︁

155

Optimizations The congruence closure operation is memoized; congruence closure

will typically be performed on very few distinct inputs during an execution. The

definition of 𝑛1 ∩ 𝑛2 effectively performs a nested-loop join, performing |𝐸1| * |𝐸2|
edge intersections; the ecta implementation performs a simple hash join instead. All

intersections are memoized; nodes/edges are ordered to improve the cache hit rate.

Reduction

An algorithm for static reduction is particularly easy to give on pseudo-tree ECTAs.

Definition 3.3.4 ((Intersecting) States at a path in an ECTA). Let 𝑛 = Node(𝑒𝑖),

where 𝑒𝑖 = Edge(𝑠𝑖, 𝑛𝑖𝑗, 𝐶𝑖) be a pseudo-tree ECTA node. Define the states at path 𝑝

starting at 𝑛 as

𝑛
⃒⃒
𝜖

= {𝑞}

𝑛
⃒⃒
𝑗.𝑝

=
⋃︁

𝑛𝑖𝑗

⃒⃒
𝑝

The states at path 𝑝 of 𝑛 intersected with state 𝑛′, 𝑛
⃒⃒∩𝑛′

𝑝
, is then defined:

𝑛
⃒⃒∩𝑛′

𝜖
= 𝑛 ∩ 𝑛′

𝑛
⃒⃒∩𝑛′

𝑗.𝑝
= Node

(︁{︁
Edge(𝑠𝑖, {𝑛𝑖1, . . . 𝑛𝑖(𝑗−1), 𝑛𝑖𝑗

⃒⃒∩𝑛′

𝑝
, 𝑛𝑖(𝑗+1), . . . , 𝑛𝑖𝑘}, 𝐶𝑖)

⃒⃒
⃒𝑒𝑖𝑗 exists

}︁)︁

For non-empty paths 𝑝, we can define similar values for an edge 𝑒 = Edge(𝑠, 𝑛𝑖, 𝐶).

𝑒
⃒⃒
𝑗.𝑝

= 𝑛𝑗

⃒⃒
𝑝

𝑒
⃒⃒∩𝑛′

𝑗.𝑝
= Edge(𝑠, {𝑛1, . . . , 𝑛𝑗−1, 𝑛𝑗

⃒⃒∩𝑛′

𝑝
, 𝑛𝑗+1, . . . , 𝑛𝑘}, 𝐶)

156

w 0=1=2

w

qa qb qc

0=1 w1=2
… …

… ……… ……

Figure 3-7

With this new vocabulary, we give the algorithm for static reduction:

Definition 3.3.5 (Reduction). First, let PEC 𝑐 = {𝑝1 = · · · = 𝑝𝑘}. Then let

𝑐𝑖 = {𝑝1, . . . , 𝑝𝑖−1, 𝑝𝑖+1, . . . , 𝑝𝑘}. Then let 𝑒 be an edge, and define

𝑚𝑖 =
⋂︁

𝑝∈𝑐𝑖

𝑒
⃒⃒
𝑝

Then define

reduce(𝑒, 𝑐) = 𝑒
⃒⃒∩𝑚1

𝑝1
. . .

⃒⃒∩𝑚𝑘

𝑝𝑘

For example, running this definition on the 𝑓 edge of Figure 3-6a produces Figure

3-6b.

An Optimization Not Taken: Avoiding “Junk Edges” Consider statically

reducing the root 𝑤 transition of Figure 3-7. This involves intersecting each of the

two edges under 𝑞𝑎 by 𝑞𝑏∩𝑞𝑐, each edge under 𝑞𝑏 by 𝑞𝑎∩𝑞𝑐, and each edge under 𝑞𝑐 by

𝑞𝑎 ∩ 𝑞𝑏. It would be semantically equivalent to intersect all three of them instead by

𝑞𝑎∩𝑞𝑏∩𝑞𝑐, which reduces the number of distinct intersections that must be performed.

Counterintuitively, doing so actually degrades performance.

157

The reason is that intersecting 𝑞𝑎 ∩ 𝑞𝑎 produces three child edges: one with con-

straint {0 = 1}, one with constraint {1 = 2}, and a “junk edge” with constraint

{0 = 1 = 2}. Although this last edge is redundant with the first two, detecting and

eliminating these redundant edges is actually rather expensive. Particularly for the

Hoogle+ domain (Section 3.4.1), where a large proportion of hyperedges have the

same symbol (the → function type symbol) with different constraints, the creation

of a redundant edge can proliferate into many more redundant edges upon reducing

other constraints. Thus, ecta takes the “slow” route of computing 𝑞𝑎 ∩ 𝑞𝑏, 𝑞𝑎 ∩ 𝑞𝑐,

and 𝑞𝑏 ∩ 𝑞𝑐 separately.

3.3.3 Flexible, Fast Enumeration

ECTAs were designed as way to compactly represent large sets of programs and effi-

ciently search them, and we now turn to efficient search. In spite of the expressiveness

of the constraint language, as shown in Section 3.4, the use of only equality constraints

offers three advantages for finding satisfying terms quickly: (1) the use of static reduc-

tion to reduce the number of spurious runs (2) the ability to use intersection during

enumeration to discover early that a choice leads to no satisfying terms, and (3) the

ability to choose the same term along multiple paths as to constructively satisfy an

equality constraint. In contrast, for reduction automata [46], which are essentially

ECTAs with disequality constraints, none of these are true.

Nonetheless, different constraints may affect the same subterms, and thus which

portions of subterms are chosen first during enumeration can have a substantial af-

fect on the amount of time needed to find a satisfying term or discover that a choice

is contradictory, Given that we managed to encode SAT into ECTAs, there is little

prospect for anything better than a heuristic approach to this ordering. Thus, in-

spired by presentations of DPLL(T) and Knuth-Bendix completion [8, 125], instead

of providing a fixed algorithm, we provide a set of branching rules such that the suc-

cessive application of rules in any order is guaranteed to terminate and yield every

satisfying term — or, in cases with infinitely many satisfying terms, to yield repre-

sentations containing unconstrained tree automata from which all such terms may be

158

trivially generated. This approach permits applications to use a custom enumeration

ordering, though ecta also offers a default ordering.

Enumeration State

Each node in an ECTA is a set of alternatives to be chosen from; as each choice is

made, the graph gradually crystallizes into a term. We begin by defining partially-

enumerated terms, consisting of a tree fragment at the top, with as-yet-unenumerated

ECTAs among the branches. These unenumerated ECTAs may not always be enu-

merated independently, but may be constrained by path constraints on their ancestors

to be equal to cousins. We thus define the enumeration state as a map from named

variables to partially-enumerated terms, so that a subnode may be enumerated once

and included by named-variable reference into multiple positions in a tree. Unenu-

merated ECTA nodes may also contain fragments of constraints inherited from their

ancestors, each paired with a named variable so that choices of constrained subterms

may be shared with other branches.

Definition 3.3.6 (Partially-Enumerated Term, Enumeration State, Fully Enumer-

ated, Denotation). Let Var be a countably infinite set of variables, and let 𝑣⊤ ∈ Var a

special initial variable. A partially enumerated term is given by the grammar:

PTerm ::= T(symbol,PTerm) | Unenumerated(𝑁, (PEC,Var)) | Ref(Var)

An enumeration state is then defined as any 𝜎, where

𝜎 : Var ⇀ PTerm

and all 𝑣 ∈ dom(𝜎) are reachable, defined:

• 𝑣⊤ is reachable.

• If 𝑣 is reachable, then all variables referenced in 𝜎(𝑣) are reachable.

159

J·KPTerm
𝜎 : PTerm× (Var ⇀ PTerm)→ P(Term× (Var→ Term))

JT(𝑠, 𝑝𝑡𝑖)KPTerm
𝜎 =

{︁
(𝑠(𝑡𝑖), 𝜌)

⃒⃒
⃒(𝑡𝑖, 𝜌𝑖) ∈ J𝑝𝑡𝑖KPTerm

𝜎 ,

𝜌 arbitrary,∀𝑗∀𝑣, 𝜌(𝑣) = 𝜌𝑗(𝑣)
}︁

JUnenumerated(𝑛, (𝑐𝑖, 𝑣𝑖))KPTerm
𝜎 =

{︁
(𝑡, 𝜌)

⃒⃒
⃒𝜌 arbitrary, 𝑡 ∈ J𝑛KN, 𝑐𝑖(𝑡), 𝑡

⃒⃒
𝑐𝑖
= 𝜌(𝑣𝑖)

}︁

JRef(𝑣)KPTerm
𝜎 =

{︁
(𝑡, 𝜌)

⃒⃒
⃒𝜌 arbitrary, 𝜌(𝑣) = 𝑡

}︁

J𝜎KES : (Var ⇀ PTerm)→ P(Var→ Term)

J𝜎KES =
{︁
𝜌
⃒⃒
dom(𝜎)

⃒⃒
⃒(𝑡𝑣, 𝜌) ∈ J𝜎(𝑣)KPTerm

𝜎 , 𝜌(𝑣) = 𝑡𝑣

}︁

Figure 3-8

An enumeration state 𝜎 is fully enumerated if, for all 𝑣 ∈ dom(𝜎), no path

constraints appear in 𝜎(𝑣).

We give an impredicative definition of the denotation of partially-enumerated terms

and enumeration states. The denotation of a partially-enumerated term within an

enumeration state is defined as the pair of a term compatible with the PTerm, and any

from a large universe of states which matches the constraints imposed by the choices

made in enumerating this term. The denotation of an enumeration state 𝜎 will then

be given by intersecting the states compatible with its components and restricting to

the domain of 𝜎 (written 𝜌
⃒⃒
dom(𝜎)

).

Figure 3-8 gives the denotation of enumeration states.

Example 3.3.7. Let 𝑣⊤ = 𝑣0 and consider the enumeration state

𝜎 = [𝑣0 ↦→ T(“𝑓 ′′,Unenumerated(Node(Edge(“𝑎′′,Edge(“𝑏′′)), ({𝜖}, 𝑣1)),Ref(𝑣1)),

𝑣1 ↦→ Unenumerated(Node(Edge(“𝑎′′),Edge(“𝑏′′)))]

Then

160

J𝜎(𝑣1)KPTerm
𝜎 =

⋃︁

𝜌

{(𝑎(), 𝜌), (𝑏, 𝜌)}

, where the union is over all 𝜌 : Var→ Term, and

J𝜎(𝑣0)KPTerm
𝜎 =

(︀ ⋃︁

𝜌

⃒⃒
𝜌(𝑣1)=𝑎()

{(𝑓(𝑎(), 𝜌(𝑣1)), 𝜌)}
)︀
∪
(︀ ⋃︁

𝜌

⃒⃒
𝜌(𝑣1)=𝑏()

(𝑓(𝑏(), 𝜌(𝑣1)), 𝜌)}
)︀

, which reduces to the terms 𝑓(𝑎(), 𝑎()) and 𝑓(𝑏(), 𝑏()) with 𝜌(𝑣1) being 𝑎() or 𝑏()

accordingly. This yields the final denotation

J𝜎KES = {[𝑣0 ↦→ 𝑓(𝑎(), 𝑎()), 𝑣1 ↦→ 𝑎()], [𝑣0 ↦→ 𝑓(𝑏(), 𝑏()), 𝑣1 ↦→ 𝑏()]}

Enumeration Algorithm and Rules

We now present the enumeration algorithm. To enumerate the ECTA with root 𝑛,

the algorithm first creates the initial partial enumeration state

𝜎 = [𝑣⊤ ↦→ Unenumerated(n)]

, and then repeatedly applies one of the following two rules:

Choose Take an unenumerated node, and create one branch for each potential

choice.

Suspend Replace an unenumerated node with a reference to a variable.

Each rule breaks down an unenumerated node in some manner, bringing the state

closer to being fully-enumerated. These rules are designed and constrained so that

any schedule for applying them to nodes yields a complete and correct enumeration

procedure. Our implementation in the ecta library provides a default ordering —

depth-first, left to right. But different orderings can result in drastically different

161

performance (explained in Remark 3.3.13 below), and thus it is valuable to provide a

general framework in place of a fixed algorithm.

We shall first give an example of these rules in action in the Hoogle+ domain, and

then present the formal definitions of Choose and Suspend, followed by proofs of

correctness.

Example 3.3.8. Figure 3-9 shows the state of enumerating the ECTA in Figure 3-4b

after three rule applications, selecting that the root of the generated term to be app

(the only choice) and suspending child 0 (the type annotation) and child 1 (the (→)

constant used to match against function-type annotations). Figure 3-10 gives this

same example after completely enumerating 𝑉 0, suspending all subterms touched by

equaality constraints. In doing so, it has selected the program ($ $); the remaining

portions to be enumerated correspond to the instantiated types of each subprogram.

Showing these are nonempty is equivalent to showing that their relevant types are

unifiable.

Note how, after completing this “unification check” (specifically, showing the non-

emptiness of 𝑉 1, 𝑉 2, 𝑉 3 by enumerating a single value), one will be able to obtain

the final term ($ $) by inspecting V0, without constructing the type annotations. The

algorithm will also terminate without enumerating any of the 𝑞any nodes, which may

take on infinitely many values. This is equivalent to inferring only the most general

type for a term.

Definition of Choose Choose consists of a local nondeterministic rewrite rule

that runs on unenumerated nodes, which we then lift to run on an entire partial

enumeration state. The core rule is defined

∀𝑖, 𝜖 /∈ 𝑐𝑖 ∃𝑖, 𝑒𝑖 = Edge(𝑠, 𝑛𝑗, 𝑑𝑘)

𝑤𝑘 = freshVar() 𝐶 = (𝑐𝑖, 𝑣𝑖) ∪ (𝑑𝑘, 𝑤𝑘)

Unenumerated(Node(𝑒𝑖), (𝑐𝑖, 𝑣𝑖))→ T(𝑠,Unenumerated(𝑛𝑗, desc(𝑗, 𝐶)))
𝐶ℎ𝑜𝑜𝑠𝑒𝑁𝑜𝑑𝑒

162

$

→ 1.1=2.1
1.2=2.2

app

(.0.2=V1)
(.0.0=V2)
(.0.1=V3)

→

qany qany

(→)

foldr map

(→)

… …

…

V0

V1
V2

V1 V2

qany

(→)

(.0=V3)

Figure 3-9: The ECTA of Figure 3-4b after applying the Choose rule to the top
node and the Suspend rules to its first two children. Triangles represent Ref nodes.
The arrows marked with path/variable pairs on the app term fragment represent
Unenumerated nodes.

$

→

app

V0

V1
V2

V1 V2

(→)

V2

V3 V1

$

V3

V3 (.1 = V5)
(.2 = V6)

(.1 = V5)
(.2 = V6)

→

qany qany

(→)

→ 1.1=2.1
1.2=2.2

→

qany qany

(→)

(→)

Figure 3-10: The example of Figure 3-9 after fully enumerating V0. The path/variable
pairs on V1 and V3 indicate that the value at this variable is an Unenumerated node.

163

The first premise on Choose states that this rule cannot run if one of the con-

straints inherited from parents covers the current node, as this constraint would

otherwise be lost. The next two premises nondeterministically pick an edge within

the enumerated node, The last premise defines the metavariable 𝐶 as a temporary

container of all constraint/variable pairs, both those inherited from parents and those

generated by the enumerated edge. Finally, the Choose rule rewrites the unenumer-

ated node to a partially-enumerated node with the symbol of the chosen edge, and

whose children are unenumerated nodes corresponding to each child of said edge, with

constraints updated appropriately to descend into a child at that index. The latter

is accomplished using the desc function, defined

desc(𝑖, 𝑐𝑗, 𝑣𝑗) =
{︁

(𝑐′𝑘, 𝑣𝑘)
⃒⃒
⃒𝑐′𝑘 =

{︁
𝑝
⃒⃒
⃒𝑖.𝑝 ∈ 𝑐𝑘

}︁
, 𝑐′𝑘 ̸= ∅

}︁

We now give the final Choose rule, which runs the ChooseNode rule within a

partial enumeration state, subject to restrictions

𝜎(𝑣) = 𝐸[𝑝𝑡] (𝜎(𝑣) ̸= 𝑝𝑡) ∨ (∀𝑤, 𝜎(𝑤) does not mention 𝑣) 𝑝𝑡→ 𝑝𝑡′

𝜎 → 𝜎[𝑣 ↦→ 𝐸[𝑝𝑡′]]
𝐶ℎ𝑜𝑜𝑠𝑒

Example 3.3.9. Consider the partially-enumerated term

𝑝𝑡 = Unenumerated(Node(Edge(“𝑓 ′′, 𝑛1, 𝑛2, {0 = 1.0})), ({1.1}, 𝑣2))

for some nodes 𝑛1, 𝑛2. Then ChooseNode(𝑝𝑡) has one possible result, namely

T(“𝑓 ′′,Unenumerated(𝑛1, ({𝜖}, 𝑣3)),Unenumerated(𝑛2, ({0}, 𝑣3), ({1}, 𝑣2)))

Definition of Suspend The Suspend rule consists of two phases: First, an Un-

enemurated node 𝑝𝑡 containing ECTA node 𝑛 is replaced with a reference to another

164

component of 𝜎, and its constraints are collected. Second, 𝜎 is updated to set this

new component to a copy of 𝑝𝑡 if not already present, or, if it is, to intersect that

component with 𝑛. In doing so, if the root of 𝑝𝑡 is simultaneously constrained to be

equal to multiple distinct variables, these variables are merged, and all components

of 𝜎 are updated to refer to only the merged variable.

The Suspend rule itself chooses an unenumerated node 𝑝𝑡 in some 𝜎(𝑣), and then

delegates to two helper functions: SuspendVar and MergeVar. SuspendVar

returns a 5-tuple of the partially-enumerated node with which to replace 𝑝𝑡, the

ECTA node in its body, the variable at which to place the new component, the set

of variables that must be equal to this component, and the set of path constraints on

children of 𝑛. Suspend updates 𝜎 to replace 𝑝𝑡 with the Ref node before invoking

MergeVars, which updates it into the final 𝜎′.

𝜎(𝑣) = 𝐸[𝑝𝑡] SuspendVar(𝑝𝑡) = (𝑝𝑡′, 𝑛, 𝑣′, 𝑉, 𝐶)

𝜎 →MergeVars(𝑛, 𝑣′, 𝑉 ∩ dom(𝜎), 𝑉, 𝐶, 𝜎[𝑣 ↦→ 𝐸[𝑝𝑡′]])
𝑆𝑢𝑠𝑝𝑒𝑛𝑑

𝑉 =
{︁
𝑣𝑖

⃒⃒
⃒𝑐𝑖 = {𝜖}

}︁
𝐶 =

{︁
(𝑐𝑖, 𝑣𝑖)

⃒⃒
⃒𝑐𝑖 ̸= {𝜖}

}︁
𝑣 ∈ 𝑉

SuspendVar(Unenumerated(𝑛, (𝑐𝑖, 𝑣𝑖))) = (Ref(𝑣), 𝑛, 𝑣, 𝑉, 𝐶)
𝑆𝑢𝑠𝑝𝑒𝑛𝑑𝑉 𝑎𝑟

Note that a consequence of the 𝑣 ∈ 𝑉 premise of SuspendVar is that there must

be at least one constraint on the empty path 𝜖 among the 𝑐𝑖. This also prevents any

𝜎(𝑣) from becoming a Ref node, as no such constraints will appear at a root of 𝜎.

MergeVars performs the heavy-lifting of the Suspend rule. It takes as argu-

ments, respectively: the ECTA node 𝑛 to form the contents of the new component,

the variable 𝑣 at which to place the new component, the possibly-empty list 𝑉 = 𝑣𝑖

of variables 𝑣𝑖 already in dom(𝜎) such that 𝑣𝑖 is constrained to be equal to the new

component, the list 𝑊 ⊇ 𝑉 of all variables constrained to be equal to the compo-

nent, the inherited constraints 𝐶 on 𝑛, and, finally, the partial enumeration state 𝜎

to be updated. The premises of MergeVars intersect Unenumerated(𝑛,𝐶) with all

165

Unenumerated nodes pointed to by the 𝑣𝑖, storing the result in the target variable 𝑣.

The conclusion replaces all references to the 𝑤𝑖 in all of 𝜎 with 𝑣.

𝜎(𝑣𝑖) = Unenumerated(𝑛𝑖, 𝐶𝑖)

𝜎′ = 𝜎[𝑣 ↦→ Unenumerated(𝑛 ∩⋂︀
𝑖 𝑛𝑖, 𝐶 ∪

⋃︀
𝑖 𝐶𝑖)]

MergeVars(𝑛, 𝑣, 𝑣𝑖, 𝑤𝑖, 𝐶, 𝜎) = (𝑡 ↦→ [𝑣/𝑤1](. . . [𝑣/𝑤𝑘]𝑡)) ∘ 𝜎′ 𝑀𝑒𝑟𝑔𝑒𝑉 𝑎𝑟𝑠

Example 3.3.10. Consider the partial enumeration state

𝜎 =[𝑣⊤ ↦→ T(“𝑓 ′′,Unenumerated(𝑛1, ({𝜖}, 𝑣1), ({𝜖}, 𝑣2), ({0}, 𝑣3)),

Unenumerated(𝑛2, ({1}, 𝑣2)))

, 𝑣1 ↦→ Unenumerated(𝑛3)

, 𝑣2 ↦→ Unenumerated(𝑛4, ({0}, 𝑣4))]

Only the Unenumerated node for 𝑛1 is a possible target for the Suspend rule.

SuspendVar returns either the tuple (Ref(𝑣1), 𝑛1, 𝑣1, {𝑣1, 𝑣2}, {({0}, 𝑣3)}) or the tuple

(Ref(𝑣2), 𝑛1, 𝑣2, {𝑣1, 𝑣2}, {({0}, 𝑣3)}). The results for either choice will be comparable;

we assume the first. The final output is then

𝜎′ = [𝑣⊤ ↦→ T(“𝑓 ′′,Ref(𝑣1),Unenumerated(𝑛2, ({1}, 𝑣1)))

, 𝑣1 ↦→ Unenumerated(𝑛1 ∩ 𝑛3 ∩ 𝑛4, ({0}, 𝑣3), ({0}, 𝑣4))

, 𝑣2 ↦→ Unenumerated(𝑛4, ({0}, 𝑣4))]

Notice that the current definition of Suspend leaves the binding for 𝑣2, though it

is no longer referenced and can have no effect on the rest of enumeration.

Remark 3.3.11. This presentation, specifically the premise in MergeVars that

each 𝜎(𝑣𝑖) is an Unenumerated node and the second premise of Choose, requires

166

that no variable be enumerated with Choose prior to being merged with another

variable. This strict ordering can be relaxed by replacing the intersection of ECTA

nodes with a compatibility check between partially-enumerated terms..

Remark 3.3.12. Implementation note: To implement the MergeVars step, the

ecta library adds an extra layer of indirection to 𝜎 using a union-find data structure

to track which variables have been merged. In doing so, it avoids the need to modify

the body of 𝜎.

Remark 3.3.13. The intersections in MergeVars may result in having 𝜎(𝑣) =

Unenumerated(Node(), . . .) for some 𝑣. Because 𝜎 then contains the empty node

Node(), its denotation is hence ∅, and this entire branch of computation may be

pruned. This is the reason that node ordering affects performance.

Correctness

Lemma 3.3.14 (Soundness of Choose). Consider a partial enumeration state 𝜎, and

fix a contained partially-enumerated term 𝜎(𝑣) = 𝐸[𝑝𝑡]. Consider the set 𝑃 of all 𝑝𝑡′

such that 𝑝𝑡 → 𝑝𝑡′ by the ChooseNode rule. Let 𝑆 be the set of 𝜎′ reachable from

𝜎 by one application of the Choose rule, namely
{︁
𝜎[𝑣 ↦→ 𝐸[𝑝𝑡′]]

⃒⃒
⃒𝑝𝑡′ ∈ 𝑃

}︁
. Then

J𝜎KES =
⋃︀

𝜎′∈𝑆

{︁
𝜌
⃒⃒
dom(𝜎)

⃒⃒
⃒𝜌 ∈ J𝜎′KES

}︁
.

Lemma 3.3.15 (Soundness of Suspend). Consider a partial enumeration state 𝜎,

and let 𝜎 → 𝜎′ by the Suspend rule. Then
{︁
𝜌(𝑣⊤)

⃒⃒
⃒𝜌 ∈ J𝜎KES

}︁
=

{︁
𝜌(𝑣⊤)

⃒⃒
⃒𝜌 ∈ J𝜎′KES

}︁
.

Lemma 3.3.16 (Completeness of Choose and Suspend). Let 𝑛 be an ECTA node

and 𝜎0 its corresponding initial partial enumeration state, and let 𝜎0 →* 𝜎 by the

Choose and Suspend rules. Suppose 𝜎 is irreducible by the Choose and Suspend

rules. Then either 𝜎 is fully enumerated, or J𝜎KES = ∅.

Proof. Suppose 𝜎 is not fully enumerated. Then, by definition, 𝜎(𝑣) contains a path

constraint for some 𝑣. As no path constraints may appear within a Mu node, 𝜎(𝑣)

must contain a subterm of the form 𝑝𝑡 = 𝑡𝑒𝑥𝑡𝑈𝑛𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒𝑑(𝑁𝑜𝑑𝑒(𝑒𝑖), (𝑐𝑖, 𝑣𝑖)). We

proceed by cases:

167

1. There is no 𝑖 with 𝜖 ∈ 𝑐𝑖: Then one of the following subcases applies:

(a) (Choose case) There is no 𝑣 such that 𝑝𝑡 = 𝜎(𝑣), or there is such a 𝑣

and no variable 𝑣′ such that 𝜎(𝑣′) references 𝑣. Then the conditions of

Choose apply, and 𝜎 is not irreducible.

(b) (Occurs-check failure case) 𝑝𝑡 = 𝜎(𝑣) for some 𝑣, and 𝜎(𝑣′) references

𝑣 for some 𝑣′. This case analysis is then repeated for 𝑣′. Either this

process terminates in one of the other cases, or there is a sequence of

variables 𝑣1, . . . , 𝑣𝑘 and 𝑣𝑘+1 = 𝑣1 such that 𝜎(𝑣𝑖) references 𝜎(𝑣𝑖+1) for

1 ≤ 𝑖 ≤ 𝑘. Each 𝑣𝑖 has a corresponding path 𝑝𝑖 ̸= 𝜖 such that 𝜌 ∈ J𝜎KES

must satisfy 𝜌(𝑣𝑖)
⃒⃒
𝑝𝑖

= 𝜌(𝑣𝑖+1) for 1 ≤ 𝑖 ≤ 𝑘. Since all terms are finite, this

is unsatisfiable, and so J𝜎KES = ∅.

2. There is at least one 𝑖 with 𝜖 ∈ 𝑐𝑖: Consider all such 𝑖 and their corresponding

𝑣𝑖. Then one of the following subcases applies:

(a) (Suspend case) For all such 𝑣𝑖, 𝜎(𝑣𝑖) is an Unenumerated node. Then

the Suspend rule applies, and 𝜎 is not irreducible.

(b) (Referenced-yet-enumerated case) For some 𝑣𝑖, 𝜎(𝑣𝑖) is either a Ref

node or a T node. We refer to these as the “Ref-node-at-root” case and

the “T-node-at-root” case. The Ref-node-at-root case cannot occur: it

would have to stem from an application of the SuspendVar rule at a

root, which would require an Unenumerated node containing the path 𝜖

at a root, which cannot be created by either rule. The T-node-at-root

case also cannot occur: this T node could only be created by running the

Choose rule on 𝜎(𝑣𝑖), but this rule could not have been run because of

the external reference to 𝑣𝑖.

Theorem 3.3.17 (Termination of Enumeration). There is no infinite sequence 𝜎0 →
𝜎1 → . . . where each transition follows from the Choose and Suspend rules.

168

Proof. For paths 𝑝1, 𝑝2 let 𝑝1 ⊑ 𝑝2 if 𝑝1 = 𝑝2 or length(𝑝1) < length(𝑝2), where

length(𝑝) denotes normal list length. For ECTA nodes 𝑛1, 𝑛2, let 𝑛1 ⊑ 𝑛2 if 𝑛1 = 𝑛2 or

depth(𝑛1) < depth(𝑑2), where depth(𝑛) denotes normal DAG depth. Order integers

normally. Order multisets of paths, ECTA nodes, and integers by their respective

multiset orderings [48].

Define 𝐹 (𝜎) = (𝐴,𝐵,𝐶), where 𝐴 is the set of paths directly contained in an

Unenumerated node, 𝐵 the set of ECTA nodes directly contained in an Unenumerated

node, and 𝐶 the set of depths of Unenumerated nodes (where each 𝜎(𝑣) has depth

0, their children have depth 1, etc). We shall show that both the Choose and

Suspend rules decrease 𝐹 (𝜎) under the lexicographic ordering. Since this ordering

is well-founded by construction, that completes the proof of termination.

1. Choose case: Decreases 𝐴 if the node being enumerated contains any con-

straints. In any case, decreases 𝐵.

2. Suspend case: If 𝑉 in the SuspendVar rule is nonempty, decreases 𝐴. Oth-

erwise, if 𝑉 is empty, 𝐴 is unchanged, 𝐵 is unchanged because the intersection

in the MergeVars rules is not performed, and 𝐶 is decreased because an

Unenumerated node is moved to root position.

Theorem 3.3.18 (Correctness of Enumeration). Let 𝑛 be an ECTA node, 𝜎0 the

initial partial enumeration state constructed by the enumeration algorithm, and con-

sider all terminating sequences 𝜎0 → · · · → 𝜎𝑡, where each transition follows from the

Choose or Suspend rules, and 𝜎𝑡 is irreducible by these same rules. Let 𝑆 by the

set of all such 𝜎𝑡. Then J𝑛KN =
{︁
𝜌(𝑣⊤)

⃒⃒
⃒𝜎 ∈ 𝑆, 𝜌 ∈ J𝜎KES

}︁

Proof. Given an ECTA node 𝑛, the enumeration algorithm first constructs the initial

state 𝜎0 = [𝑣⊤ ↦→ Unenumerated(𝑛)]. It is trivial from the definitions that J𝜎0KES ={︁
[𝑣⊤ ↦→ 𝑡]

⃒⃒
⃒𝑡 ∈ J𝑛KN

}︁
, i.e.: that J𝜎0KES is equivalent to J𝑛KN. The theorem then follows

immediately from Lemmas 3.3.14, 3.3.15, and 3.3.16 and Theorem 3.3.17

169

3.4 Applications

3.4.1 Hoogle+

We described this domain in Section 3.1. We also implemented an additional opti-

mization: by adding relevant typing to the encoding: instead of having a single node

for each size of term, there is a node for each combination of size and subset of the

input arguments. The final search can thus only include terms that use all input

variables.

We ran ecta and Hoogle+ on 45 of the Hoogle+ benchmarks, both with a

timeout of 120 seconds. Figure 3-11 shows the times of both. This chart is biased

against ecta: the times shown are for Hoogle+ to generate a single solution, but

for ecta to enumerate all solutions. ecta is slower on 13 of them, the same (both

time out) on 5, and faster on the other 27. There are 2 benchmarks which time out

with ecta, but not Hoogle+ (and in fact take under 10 seconds), and 2 which time

out with Hoogle+ but not ecta.

There are a number of benchmarks which take hundreds of milliseconds with

Hoogle+, but tens of milliseconds with ecta. These can be explained by Hoogle+’s

overhead in using an SMT solver. However, a number of benchmarks take significant

time in Hoogle+, but not ecta. The greatest speedup is the mapEither benchmark,

which takes 17.43 seconds for Hoogle+, but 0.15 for ecta, a speedup factor of 114.3.

Overall, this shows that the general ecta library is radically faster than a specialized

synthesizer on some benchmarks — and we are still adding more optimizations both

to ecta and to the encoding.

3.4.2 Database Optimization

E-graphs have been productively applied to rewrite-based optimization. In this sub-

section we describe an optimization task where ECTAs perform significantly better

than E-graphs.

Database query optimization is often performed by applying semantics-preserving

170

both
multiAppPair
applyNtimes
mbToEither
inverseMap

test
lookup

mbAppFirst
dedupe

applyPair
mbElem

zipWithResult
eitherTriple
cartProduct

takeNdropM
headLast

splitStr
containsEdge

app3
indexesOf

maybe
appBoth

splitAtFirst
mapTwice

pipe
areEq

firstJust
resolveEither

firstMatch
coundPredMatch

flatten
app2

appendN
hoogle01
firstMaybe
firstRight

map
singletonList

rights
firstKey

mergeEither
replFuncs

mapMaybes
headRest
mapEither

0 20 40 60 80 100 120

ECTA Hoogle+

Figure 3-11

171

rewrites to the query, with the goal of executing the query more quickly by leveraging

views or indices. Previous work [56] has extended the conventional query optimization

approach to consider the layout of the data in the database in addition to the query

plan. In this work, queries are optimized by applying local rewrites according to a

heuristic schedule. In this subsection, we show how ECTAs can be applied to this

problem and show that ECTAs offer significant performance advantages over E-graphs

in this domain.

The goal of our optimizer is to select an optimal set of data structures and access

methods to implement a relational query. The optimizer works on a relational algebra

DSL that is extended with operators that describe data structures. A key feature of

this DSL is that it uses staging: data structures are constructed in the first (compile-

time) stage and access methods execute in the second (run-time) stage. During

optimization, the system will consider programs that are not well staged (i.e. the

staging constraints are not yet satisfied). After optimization, however, it is only

useful to consider programs that have the desired staging structure.

We implement a simple version of the optimizer in [56] using both ECTAs and

E-graphs. We show that ECTAs allow us to ignore concerns about staging during the

rewriting phase and then when rewriting is complete, ECTAs make it easy to only

enumerate well-staged terms.

Implementation

We do not describe the DSL in detail in this subsection, but we describe enough to

explain the use of equality constraints to describe the staging status of a term. Each

term is available in the run-time stage, the compile-time stage, both, or neither. A

term is available in neither stage if it violates some staging constraint. We write

the staging status of a term 𝑡 as 𝑠𝑡𝑎𝑔𝑒(𝑡) = (𝑐𝑜𝑚𝑝𝑖𝑙𝑒, 𝑟𝑢𝑛). The staging status of a

term is determined by its constructor and the status of its subterms. For example,

𝑠𝑡𝑎𝑔𝑒(filter(𝑝, 𝑞)) = (𝑝𝑐 ∧ 𝑞𝑐, 𝑝𝑟 ∧ 𝑞𝑟) where 𝑠𝑡𝑎𝑔𝑒(𝑝) = (𝑝𝑐, 𝑝𝑟), 𝑠𝑡𝑎𝑔𝑒(𝑞) = (𝑞𝑐, 𝑞𝑟).

In general, the staging status of a term is a conjunction of a subset of the statuses of

its subterms. After rewriting, the system will enumerate terms that are available at

172

compile time (have the stage (𝑡, 𝛼)). We now show how to encode these constraints

into an ECTA.

Following the convention in Section 3.1, the first child of every edge represent-

ing a term constructor is a metadata node (labeled meta). These metadata nodes

have children for the two tracked stages: compile and run. The staging status is a

Boolean function of the staging statuses of the subterms. These functions are en-

coded using truth tables. For example, the meta node for filter chooses between

{compile(𝑡, 𝑡, 𝑡), compile(𝑓, 𝑡, 𝑓), . . . }. The constraint on filter connects the argu-

ments of the truth table to the staging status of the subterms.

Truth tables can grow very large, particularly for variadic operators. To avoid

this blowup, our implementation approximates the staging statuses. The DSL only

constrains a term to be available in a stage; it never constrains a term to not be

available. Therefore, a term may have any status unless it is constrained to be

available. This approximation allows the truth table for filter to be written as

{compile(𝑡, 𝑡, 𝑡), compile(𝑓,⊤,⊤)} where ⊤ = {𝑡, 𝑓}.
The E-graph version of the optimizer also tracks the staging status of its terms. As

in the ECTA version, each term constructor has a metadata node as its first argument.

Instead of using constraints to track the staging status, the E-graph version proceeds

in two phases. While applying optimization rewrites, it assumes that every term has

the stage (𝑓, 𝑓). Next, it applies propagation rewrites that add the correct stages.

Results

Our ECTA version of the database optimizer has two key advantages over the E-graph

version. First, constraint propagation in the E-graph version is greedy; the ECTA

version is directed by the well-staged constraint at the top level. This means that the

E-graph contains many subterms that do not appear in any well-staged term, which

makes it larger. Second, in the E-graph version we use rewrite rules to propagate

constraints; in the ECTA version, constraint propagation is handled by the library.

When we run our ECTA optimizer, we find that it produces a graph with 224

nodes and 386 edges before reduction. This graph represents all of the terms pro-

173

duced by applying optimization rewrites, including terms that are not well staged.

After applying the well-staged constraint at the top level and performing one step

of reduction, the graph has 282 nodes and 428 edges. This reduction step does not

ensure that every term that is extractable from the graph satisfies the staging con-

straints, but it does ensure that there are no nodes in the graph that don’t produce

any well-staged terms.

The E-graph version produces a graph with 243 nodes and 881 edges. This graph

contains all terms—well staged and not—but each term is annotated with its staging

status.

These results show that despite the overhead of the constraint encoding in the

ECTA, the addition of equality constraints allows us to encode and track complex

properties of terms without performing manual constraint propagation or representing

terms without the properties we care about.

174

Chapter 4

Mandate: Deriving Tools from

Semantics

4.1 Why Generate CFGs?

Many programming tools use control-flow graphs, from compilers to model-checkers.

They provide a simple way to order the subterms of a program, and are usually taken

for granted. According to folklore, their definition is simple: “control-flow graphs are

an abstraction of control-flow."

In fact, as we shall argue, CFGs are not well understood, and their definition is

not so simple. Consider: Even for a single language, no two tools generate the same

CFG for the same program, and we have found no prior attempt to define what it

means for a given CFG to correctly abstract a program. Before diving deeper into the

need for a theory of CFGs, let us illustrate the nuances of CFG-generation: Figure

4-1 is a fragment of a pretty-printer. How would a CFG for it look? Here are three

possible answers for different kinds of tools:

1. Compilers want small graphs that use little memory. A compiler may only give

one node per basic block, giving the graph in Figure 4-2a.

2. Many static analyzers give abstract values to the inputs and result of every

expression. To that end, frameworks such as Polyglot [126] and IncA [161] give

175

two nodes for every expression: one each for entry and exit. Figure 4-2b shows

part of this graph. We previously argued for the utility of this style of CFG in

Section 2.7.2.

3. Consider an analyzer that proves this program’s output has balanced paren-

theses. It must show that there are no paths in which one if-branch is taken

but not the other. This can be easily written using a path-sensitive CFG that

partitions on the value of b (Figure 4-2c). Indeed, in Section 4.7, we build such

an analyzer atop path-sensitive CFGs in under 50 lines of code.

b := prec < 5 ;

i f (b) then

print (" (")

e l s e

s k i p ;

print (left) ;

print ("+");

print (right) ;

i f (b) then

print (") ")

e l s e

s k i p

Figure 4-1

All three tools require separate CFG-generators.

Whence CFGs? What if we had a formal semantics (and

grammar) for a programming language? In principle, we

should be able to automatically derive all tools for the lan-

guage. In this dream, only one group needs to build a seman-

tics for each, and then all tools will automatically become

available — and semantics have already been built for sev-

eral major languages [20, 132, 75]. In this chapter, we take

a step towards that vision by developing the formal corre-

spondence between semantics and control-flow graphs, and

use it to automatically derive CFG generators from a large

class of operational semantics.

While operational semantics define each step of compu-

tation of a program, the correspondence with control-flow

graphs is not obvious. The “small-step” variant of opera-

tional semantics defines individual steps of program execution. Intuitively, these

steps should correspond to the edges of a control-flow graph. In fact, we shall see

that many control-flow edges correspond to the second half of one rule, and the first

half of another. We shall similarly find the nodes of a control-flow graph correspond to

neither the subterms of a program nor its intermediate values. Existing CFG genera-

tors skip these questions, taking some notion of labels or “program points” as a given

176

b := prec < 5

print(“(”) skip

print(left);
print(“+”);
print(right)

print(“)”) skip

b

b

(a)

prec 5
<

 if ()b

skip print()“(”

b :=

(b)

b := prec < 5

print(“(”) skip

print(left);
print(“+”);
print(right)

print(“)”) skip

b

b

b

print(left);
print(“+”);
print(right)

b

b=true b=false

(c)

Figure 4-2: Variants of control-flow graphs. Colors are for readability.

177

(e.g.: [156]). We instead develop CFGs from first principles, and, after much theory,

discover that “a CFG is a projection of the transition graph of abstracted

abstract machine states.”

Abstraction and Projection and Machines The first insight is to transform the

operational semantics into another style of semantics, the abstract machine [54], via

a new algorithm. Evaluating a program under these semantics generates an infinite-

state transition system with recognizable control-flow. Typically at this point, an

analysis-designer would manually specify some kind of abstract semantics which col-

lapses this system into a finite-state one. Our approach does this automatically by

interpreting the concrete semantics differently, using an obscure technique called ab-

stract rewriting. From this reduced transition system, a familiar structure emerges:

we have obtained our control-flow graphs!

Now all three variants of control-flow graph given in this section follow from dif-

ferent abstractions of the abstract machine, followed by an optional projection, or

merging of nodes. With this approach, we can finally give a formal, proven corre-

spondence between the operational semantics and all such variants of a control-flow

graph.

Mandate: A CFG-Generator Generator The primary goal of this chapter is

to develop the first theory of CFGs from first principles. Yet our theory immediately

lends itself to automation. We have implemented our approach in Mandate, the

first control-flow-graph generator generator. Mandate takes as input the operational

semantics for a language, expressed in an embedded Haskell DSL that can express a

large class of systems, along with a choice of abstraction and projection functions.

It then outputs a control-flow-graph generator for that language. By varying the

abstraction and projection functions, the user can generate any of a large number of

CFG-generators.

Mandate has two modes. In the interpreted mode, Mandate abstractly executes

a program with its language’s semantics to produce a CFG. For cases where the

178

〈
(while e do s, [� �→ �])

∣∣ k
〉

1〈
(if e then s;while e do s else skip, [� �→ �])

∣∣ k
〉

1〈
(e, [� �→ �])

∣∣ k ◦ [(if �t then s;while e do s else skip,�µ)]
〉

1〈
(�, [� �→ �])

∣∣ k ◦ [(if �t then s;while e do s else skip,�µ)]
〉

1
〈
(s;while e do s, [� �→ �])

∣∣ k
〉

1〈
(s, [� �→ �])

∣∣ k ◦ [(�t;while e do s,�µ)]
〉

1

〈
(�, [� �→ �])

∣∣ k
〉

1

〈
(�, [� �→ �])

∣∣ k ◦ [(�t;while e do s,�µ)]
〉

1

tIn

eIn

eOut

sIn

sOut

tOut

genCfg t@ (Whi le e s) = do
(t I n , tOut) <− makeInOut t
(e In , eOut) <− genCfg e
(s In , sOut) <− genCfg s
connect t I n e I n
connect eOut s I n
connect eOut tOut
connect sOut t I n
r e t u r n (t I n , tOut)

1

Figure 4-3: (Top left) SOS rules for loops and conditionals (Top right) A graph-
pattern generated from these rules, describing the control-flow of all while-loops (Bot-
tom) Generated CFG-generation code

control-flow of a node is independent from its context (e.g.: including variants (1)

and (2) but not (3)), Mandate’s compiled mode can output a CFG-generator as a

short program, similar to what a human would write (Figure 4-3).

We have evaluated Mandate on several small languages, as well as two larger

ones. The first is Tiger, an Algol-family language used in many compilers courses,

and made famous by a textbook of Appel [6]. The second is MITScript [26], a

JavaScript-like language with objects and higher-order functions used in an under-

graduate JIT-compilers course. While these are pedagogical languages without the

edge-cases of C or SML, they nonetheless contain all common control-flow features

except exceptions. And, since previous work on conversion of semantics features small

lambda calculi, ours are the largest examples of automatically converting a semantics

into a different form, by a large margin.

Overall, this chapter makes the following contributions:

1. A formal and proven correspondence between the operational semantics and

many common variations of CFGs, giving the first from-first-principles theoret-

179

ical explanation of CFGs.

2. An elegant new algorithm for converting small-step structural operational se-

mantics into abstract machines.

3. An algorithm which derives many types of control-flow graph generators from

an abstract machine, determined by choice of abstraction and projection func-

tions, including standalone generators which execute without reference to the

semantics (“compiled mode”).

4. An “automated termination proof,” showing that, if the compiled-mode CFG-

generator terminates (run once per language/abstraction pair), then so does the

corresponding interpreted-mode CFG generator (run once per program).

5. The first CFG-generator generator, Mandate, able to automatically derive

many types of CFG generators for a language from an operational semantics

for that language, and successfully used to generate CFG-generators for two

rich languages. The generated CFG-generators were then used to build two

static-analyzers.

Further, our approach using abstract rewriting offers great promise in deriving other

artifacts from language semantics.

4.2 Control-Flow Graphs for IMP

We shall walk through a simple example of generating a control-flow graph generator,

using a simple imperative language called IMP. IMP features conditionals, loops,

mutable state, and two binary operators. Figure 4-5 gives the syntax. In this syntax,

we explicitly split terms into values and non-values to make the rules easier to write.

We will do this more systematically in Section 4.3.2.

The approach proceeds in three phases, corresponding roughly to the large boxes

in Figure 4-4. In the first phase (top-left box / Section 4.2.1), we transform the

semantics of IMP into a form that reveals the control flow. In the second phase

180

Graph
patterns

Syntax-directed
CFG Generator

Per language (sometimes)

SOS PAM AM

CFG (Interpreted mode)

Program
Source

Per program

Per language

CFG (Compiled mode)
Abstracted
Program

Figure 4-4: Dataflow of our approach

Variables 𝑥, 𝑦, . . . ∈ Var
Expr. Values 𝑣 ::= 𝑛 ∈ Int | true | false
Expressions 𝑒 ::= 𝑣 | 𝑥 | 𝑒 + 𝑒 | 𝑒 < 𝑒

Stmt. Values 𝑤 ::= skip
Statements 𝑠 ::= 𝑤 | 𝑠; 𝑠 | while 𝑒 do 𝑠

| 𝑥 := 𝑒 | if 𝑒 then 𝑠 else 𝑠

Figure 4-5: Syntax of IMP

181

(bottom-left box / Section 4.2.2), we show how to interpret these semantics with

abstract rewriting [14] to obtain CFGs. In the finale (top-right box / Section 4.2.3),

we show how to use abstract rewriting to discover facts about all IMP programs,

resulting in human-readable code for a CFG-generator.

4.2.1 Getting Control of the Semantics

Semantics The language has standard semantics, so we only show a few of the

rules, given as structural operational semantics (SOS). Each rule relates an old term

and environment (𝑡, 𝜇) to a new one (𝑡′, 𝜇′) following one step of execution. As our

first running example, we use the rules for assignments. We will later introduce

our two other running examples: addition and while-loops. Together, these cover all

features of semantic rules: environments, external semantic functions, branching, and

back-edges.

(𝑒, 𝜇) ; (𝑒′, 𝜇′)

(𝑥 := 𝑒, 𝜇) ; (𝑥 := 𝑒′, 𝜇′)
𝐴𝑠𝑠𝑛𝐶𝑜𝑛𝑔

(𝑥 := 𝑣, 𝜇) ; (skip, 𝜇[𝑥→ 𝑣])
𝐴𝑠𝑠𝑛𝐸𝑣𝑎𝑙

These rules give the basic mechanism to evaluate a program, but don’t have the form

of stepping from one subterm to another, as a control-flow graph would. So, from

these rules, our algorithm will automatically generate an abstract machine (AM). This

machine acts on states
⟨︀
(𝑡, 𝜇)

⃒⃒
𝐾
⟩︀
. 𝐾 is the context or continuation, and represents

what the rest of the program will do with the result of evaluating 𝑡. 𝐾 is composed

of a stack of frames. While the general notion of frames is slightly more complicated

(Section 4.3.3), in most cases, a frame can be written as e.g.: [(𝑥 := �𝑡,�𝜇)], which

is a frame indicating that, once the preceding computation has produced a term and

environment (𝑡′, 𝜇′), the next step will be to evaluate (𝑥 := 𝑡′, 𝜇′). Our algorithm

generates the following rules. These match the textbook treatment of AMs [54].

⟨︀
(𝑥 := 𝑒, 𝜇)

⃒⃒
𝑘
⟩︀

→
⟨︀
(𝑒, 𝜇)

⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀
⟨︀
(𝑣, 𝜇)

⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀
→

⟨︀
(skip, 𝜇[𝑥→ 𝑣])

⃒⃒
𝑘
⟩︀

182

The first AM rule, on seeing an assignment 𝑥 := 𝑒, will focus on 𝑒. Other rules, not

shown, then reduce 𝑒 to a value. The second then takes this value and evaluates the

assignment.

While these rules have been previously hand-created, this work is the first to derive

them automatically from SOS. These two SOS rules become two AM rules. A naive

interpretation is that the first SOS rule corresponds to the first AM rule, and likewise

for the second. After all, the left-hand sides of the first rules match each other, as

do the right-hand sides of the second. But notice how the RHSs of the firsts do not

match, nor do the LHSs of the seconds. The actual story is more complicated. This

diagram gives the real correspondence:

(e, µ) � (e′, µ′)

(x := e, µ) � (x := e′, µ′)
1

(x := v, µ) � (skip, µ[x → v])
1

The first AM rule is simple enough: it corresponds to the solid arrow, the first

half of the first SOS rule. But the second AM rule actually corresponds to the two

dashed arrows, AssnEval and the second half of AssnCong. We shall find that

jumping straight from SOS to AM skips an intermediate step, which treats each of

the three arrows separately.

This fusing of AssnEval and AssnCong happens because only two actions can

follow the second half of AssnCong: AssnEval, and the first half of AssnCong

— which is the inverse of the second half. Hence, only the pairing of AssnCong

with AssnEval is relevant, and two AM rules are enough to describe all computa-

tions. And the second AM rule actually does two steps in one: it plugs (𝑣, 𝜇) into

[(𝑥 := �𝑡,�𝜇)] to obtain (𝑥 := 𝑣, 𝜇), and then evaluates this result. So, by fusing

these rules, the standard presentation of AM obscures the multiple underlying steps,

hiding the correspondence with the SOS.

This insight — that SOS rules can be split into several parts — powers our al-

gorithm to construct abstract machines. The algorithm first creates a representation

called the phased abstract machine, or PAM, which partitions the two SOS rules into

three parts, corresponding to the diagram’s three arrows, and gives each part its

183

valueIrrelevance t =
mapTerm valToStar t

where
valToStar (Val _ _) = ValStar

valToStar t = t

Figure 4-6

own rule. The algorithm then fuses some of these rules, creating the final AM, and

completing the first stage of our CFG-creation pipeline.

Section 4.3.3 explains PAM in full, while Section 4.3.5 and Section 4.3.6 give the

algorithm for creating abstract machines. Appendix B.1 provides correctness results

for the SOS-to-AM procedure.

4.2.2 Run Abstract Program, Get CFG

The AM rules show how focus jumps into and out of an assignment during evaluation

— the seeds of control-flow. But these transitions are not control-flow edges; there are

still a few important differences. The AM allows for infinitely-many possible states,

while control-flow graphs have finite numbers of states, potentially with loops. The

AM executes deterministically, with every state stepping into one other state. Even

though we assume determistic languages, even for those, the control-flow graph may

branch. We will see how abstraction solves both of these issues, turning the AM into

the interpreted-mode control-flow graph generator.

To give a complete example, we’ll also need to evaluate an expression. Here is the

rule for variable lookups, which looks up 𝑦 in the present environment:

⟨︀
(𝑦, 𝜇)

⃒⃒
𝑘
⟩︀
→

⟨︀
(𝜇(𝑦), 𝜇)

⃒⃒
𝑘
⟩︀

Now consider the statement 𝑥 := 𝑦. It can be executed with an infinite number

of environments: the starting configuration (𝑥 := 𝑦, [𝑦 ↦→ 1]) results in (skip, [𝑦 ↦→
1, 𝑥 ↦→ 1]); (𝑥 := 𝑦, [𝑦 ↦→ 2]) yields (skip, [𝑦 ↦→ 2, 𝑥 ↦→ 2]); etc.

To yield a control-flow graph, we must find a way to compress this infinitude of

184

possible states into a finite number. The value-irrelevance abstraction, given by the

code in Figure 4-6, replaces all values with a single abstract value representing any of

them: ⋆. Under this abstraction, all starting environments for this program will be

abstracted into the single environment [𝑦 ↦→ ⋆].

In a typical use of abstract interpretation, at this point a new abstract semantics

must be manually defined in order to define executions on the abstract state. However,

with this kind of syntactic abstraction, our system can interpret the exact same AM

rules on this abstract state, a process called abstract rewriting. Now, running in fixed

context 𝐾, there is only one execution of this statement.
⟨︀
(𝑥 := 𝑦, [𝑦 ↦→ ⋆])

⃒⃒
𝐾
⟩︀
→

⟨︀
(𝑦, [𝑦 ↦→ ⋆])

⃒⃒
𝐾 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀

→
⟨︀
(⋆, [𝑦 ↦→ ⋆])

⃒⃒
𝐾 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀

→
⟨︀
(skip, [𝑦 ↦→ ⋆, 𝑥 ↦→ ⋆])

⃒⃒
𝐾
⟩︀

This abstract execution is divorced from any runtime values, yet it still shows the

flow of control entering and exiting the assignment and expression— exactly as in

the expression-level control-flow graph from Figure 4-2b. And thus we can take

these abstract states to be our control-flow nodes. The CFG is an abstraction of the

transitions of the abstract machine.

Note that, because there are only finitely-many abstract states, this also explains

loops in control-flow graphs: looping constructs lead to repeated states, which leads

to back-edges in the transition graph. And abstractions also account for branching.

Consider the rules for conditionals:

⟨︀
(true, 𝜇)

⃒⃒
𝑘 ∘ [(if �𝑡 then 𝑠1 else 𝑠2,�𝜇)]

⟩︀
→

⟨︀
(𝑠1, 𝜇)

⃒⃒
𝑘
⟩︀

⟨︀
(false, 𝜇)

⃒⃒
𝑘 ∘ [(if �𝑡 then 𝑠1 else 𝑠2,�𝜇)]

⟩︀
→

⟨︀
(𝑠2, 𝜇)

⃒⃒
𝑘
⟩︀

Under the value-irrelevance abstraction, the condition of an if-statement will evaluate

to a configuration of the form (⋆, 𝜇). Because ⋆ can represent both true and false,

185

both of the above rules will match. This gives control-flow edges from the if-condition

into both branches, exactly as desired.

The value-irrelevance abstraction gives an expression-level CFG. But it is not the

only choice of abstraction. Section 4.5 presents the CFG-derivation algorithm, and

shows how other choices of abstraction lead to other familiar control-flow graphs, and

also introduces projections, which give the CFG-designer the ability to specify which

transitions are “internal” and should not appear in the CFG.

4.2.3 A Syntax-Directed CFG-Generator

The previous section showed how to abstract away the inputs and concrete values of

an execution, turning a program into a CFG. The per-program state-exploration of

this algorithm is necessary for a path-sensitive CFG-generator, which may create an

arbitrary number of abstract states from a single AST node. But for abstractions

which discard all contextual information, only a few additional small ingredients are

needed to generate a single artifact that describes the control-flow of all instances

of a given node-type. This is done once per language, yielding the compiled-mode

CFG-generator. We demonstrate how this works for while-loops, showing how our

algorithm can combine many rules to infer control-flow, abstracts away extra steps

caused by the internal details of the semantics, and can discover loops in the control-

flow even though they are not explicit in the rules.

The semantics of while-loops in IMP are given in terms of other language con-

structs, by the rule while 𝑒 do 𝑠 ; if 𝑒 then (𝑠; while 𝑒 do 𝑠) else skip. Con-

sider an AM state evaluating an arbitrary while-loop while 𝑒 do 𝑠 in an arbitrary

context 𝑘, with an arbitrary abstract environment 𝜇. Such a state can be written
⟨︀
(while 𝑒 do 𝑠, 𝜇)

⃒⃒
𝑘
⟩︀
. Any such 𝜇 can be represented by the “top” environment

[⋆ ↦→ ⋆]. This means that all possible transitions from any while-loop can be found by

finding all rules that could match anything of the form
⟨︀
(while 𝑒 do 𝑠, [⋆ ↦→ ⋆])

⃒⃒
𝑘
⟩︀
.

Repeatedly expanding these transitions results in a graph pattern describing the

control-flow for every possible while-loop.

However, merely searching for matching rules will not result in a finite graph,

186

because of states like
⟨︀
(𝑒, [⋆ ↦→ ⋆])

⃒⃒
𝑘
⟩︀
. These states, which represents the intent

to evaluate the unknown subterm 𝑒, can match rules for any expression. Instead,

we note that, for any given 𝑒, other rules (corresponding to other graph patterns)

would evaluate its control-flow, and their results can all be soundly overapproximated

by assuming 𝑒 is eventually reduced to a value. Hence, when the search procedure

encounters such a state, it instead adds a “transitive edge” to a state
⟨︀
(⋆, [⋆ ↦→ ⋆])

⃒⃒
𝑘
⟩︀
.

With this modification, the search procedure finds only 8 unique states for while-loops.

It hence terminates in the graph pattern of Figure 4-3 (with dotted lines for transitive

edges), which describes the control-flow of all possible while-loops. From this pattern,

one could directly generate a CFG fragment for any given while-loop by instantiating

𝑒, 𝑠, and 𝑘. In combination with the graph patterns for all other nodes, this yields a

control-flow graph with a proven correspondence to the original program.

But, from these graph patterns, it is also straightforward to output code for a

syntax-directed CFG-generator similar to what a human would write. Our code-

generator traverses this graph pattern, identifying some states as the entrance and

exit nodes of the entire while-loop and its subterms. All other states are considered

internal steps which get merged with the enter and exit states (via a projection),

resulting in a few “composite” states. Figure 4-3 shows how the code-generator groups

and labels the states of this graph pattern as well as the generated code1.

After many steps transforming and analyzing the semantics of IMP, the algorithm

has finally boiled down all aspects of the control flow into concise, human-readable

code — for an expression-level CFG-generator. To generate a statement-level CFG-

generator, the user must merely re-run the algorithm again with a different abstrac-

tion. For while-loops, the resulting pattern and code are similar to those of Figure

4-3, except that they skip the evaluation of 𝑒.

The last few paragraphs already gave most of the details of graph-pattern con-

struction. Section 4.6 gives the remaining details, while Appendix B.3 proves the

algorithm’s correctness.

1This is verbatim Mandate output except that, in actual output, (1) the connect statements
are in no particular order, and (2) the actual return value is ([tIn] , [tOut]), as, in general, AST
nodes such as conditionals may have multiple final CFG nodes.

187

4.3 From Operational Semantics to Abstract Ma-

chines

The first step in our algorithm is to convert the structural operational semantics

for a language into an abstract machine which has a clear notion of control-flow.

Surprisingly, no prior algorithm for this exists (see discussion in Section 5.3). This

section hence presents the first algorithm to convert SOS to AM. Our algorithm

is unique in its use of a new style of semantics as an intermediate form, the phased

abstract machine, which simulates a recursive program running the SOS rules. We

believe this formulation is particularly elegant and leads to simple proofs, while being

able to scale to the realistic languages Tiger and MITScript.

There is a lot of notation required first. Section 4.3.1 gives a notation for all

programming languages, while Section 4.3.2 gives an alternate notation for structural

operational semantics, one more amenable to inductive transformation. Section 4.3.3

and Section 4.3.4 describe the phased and orthodox abstract machines, while Section

4.3.5 and Section 4.3.6 give the conversion algorithm. Correctness results are be

provided in Appendix B.1.

4.3.1 Terms and Languages

Our presentation requires a uniform notation for terms in all languages. Figure 4-7

gives this notation, describing both concrete terms as well as patterns used in rewrite

rules. Throughout this chapter, we use the notation · to represent lists, so that, e.g.:

term represents the set of lists of terms.

A typical presentation of operational semantics will have variable names like 𝑣1

and 𝑒′, where 𝑣1 implicitly represents a value which cannot be reduced, while 𝑒′

represents a nonvalue which can. We formalize this distinction by marking each node

either value or nonvalue, and giving each variable a match type controlling whether

it may match only values, only nonvalues, or either.

Each variable is specialized with one of three match types. Variables of the form

188

const ::= 𝑛 ∈ Int | str ∈ String
sym ::= +, <, if, . . . ∈ Symbol

mt ::= Val | NonVal | All (Match Types)
𝑎, 𝑏, 𝑐, . . . ∈ Var (Raw Vars)

𝑥 ::= 𝑎mt (Pattern Vars)

term ::= nonval(sym, term)
| val(sym, term)
| const
| 𝑥

𝑠 ::= State𝑙 (Reduction State)
𝑐 ::= (term, 𝑠) (Configurations)

Figure 4-7: Universe of terms.

𝑎Val, 𝑎NonVal, and 𝑎All are called value, nonvalue, and general variables respectively.

Value variables may only match val constructors and constants; nonvalue variables

match only nonval constructors; general variables match any.

We use a shorthand to mimic typical presentations of semantics. We will use 𝑒 to

mean a nonvalue variable, 𝑣 or 𝑛 to mean a value variable, and 𝑡 or 𝑥 for a general

variable. But variables in a right-hand side will always be general variables unless

said otherwise. For instance, in 𝑒 ; 𝑒′, 𝑒 is a nonvalue variable, while 𝑒′ is a general

variable.

Each internal node is tagged either val or nonval. For example, 1 + 1 is shorthand

for the term nonval(+, val(IntLit, 1), val(IntLit, 1)). The IMP statement 𝑥 := 1 may

ambiguously refer to either the concrete term nonval(:=, “𝑥”, val(IntLit, 1)) or to the

pattern nonval(:=, 𝑥All, val(IntLit, 1)), but should be clear from context. Others’ pre-

sentations commonly have a similar ambiguity, using the same notation for patterns

and terms.

Each language 𝑙 is associated with a reduction state State𝑙 containing all extra

information used to evaluate the term. For example, StateIMP is the set of environ-

189

rule ::= 𝑐 ; rhs
rhs ::= 𝑐

| let [𝑐 ; 𝑐] in rhs
| let 𝑐 = semfun(𝑐) in rhs

Figure 4-8: Notation for SOS

ments, mapping variables to values. Formally:

env ::= ∅ | env[str→ 𝑣]

Environments are matched using associative-commutative-idempotent patterns [7],

so that e.g.: the pattern 𝑥[“𝑦”→ 𝑣] matches the environment ∅[“𝑦”→ 1][“𝑧”→ 2].

The latter environment is abbreviated [𝑧 ↦→ 2, 𝑦 ↦→ 1]. The environment-extension

operator itself is not commutative. Specifically, it is right biased, e.g.: ∅[“𝑧” →
1][“𝑧”→ 2] = ∅[“𝑧”→ 2].

Finally, the basic unit of reduction is a configuration, defined Conf𝑙 = term×State𝑙.

We say that configuration 𝑐 = (𝑡, 𝑠) is a value if 𝑡 is a value.

4.3.2 Straightened Operational Semantics

Rules in structural operational semantics are ordinarily written like logic programs,

allowing them to be used to run programs both forward and backwards, and allowing

premises to be proven in any order. However, in most rules, there are dependences

between the variables that effectively permit only one ordering. In this section, we

give an alternate syntax for small-step operational semantics rules, which makes

this order explicit. This is essentially the conversion of the usual notation into A-

normal form [58].

The most immediate benefit of the Straightened Operational Semantics notation

is that it orders the premises of a rule. One can also gain the ordering property by

imposing a restriction on rules without a change in notation: Ibraheem and Schimdt’s

“L-attributed semantics” is exactly this, but for big-step semantics [79]. But there is

190

an additional advantage of this new notation: it has an inductive structure, which

allows defining recursive algorithms over rules.

Figure 4-8 defines a grammar for SOS rules. These rules collectively define the

step-to relation for a language 𝑙, ;𝑙. These rules are relations rather than functions,

as they may fail and may have multiple matches. 𝑅(𝐴) denotes the image of a relation,

i.e.: 𝑅(𝑥) refers to any 𝑦 such that 𝑥 𝑅 𝑦.

A rule matches on a configuration, potentially binding several pattern variables. It

then executes a right-hand side. Rule right-hand sides come in three alternatives. The

two primary ones are that a rule’s right-hand side may construct a new configuration

from the bound variables, or may recursively invoke the step-to relation, matching

the result to a new pattern. For example, the AssnCong rule from Section 4.2.1

would be rendered as:

(𝑥 := 𝑒, 𝜇) ; let [(𝑒, 𝜇) ; (𝑒′, 𝜇′)] in (𝑥 := 𝑒′, 𝜇′)

As a third alternative, it may invoke an external semantic function. Semantic func-

tions are meant to cover everything in an operational semantics that is not pure

term rewriting, e.g.: arithmetic operations. Each language has its own set of allowed

semantic functions.

Definition 4.3.1. Associated with each language 𝑙, there is a set of semantic func-

tions semfun𝑙. Each is a relation2 𝑅 of type Conf𝑙 × Conf𝑙, subject to the restriction

that (1) if 𝑐 𝑅 𝑑, then 𝑐 and 𝑑 are values, and (2) for each 𝑐 ∈ Conf𝑙, there are only

finitely many 𝑑 such that 𝑐 𝑅 𝑑.

For instance, there are two semantic functions for the IMP language: semfunIMP =

{+, <}. Both are partial functions, only defined on number/environment pairs, i.e.:

arguments of the form ((𝑛1, 𝜇1), (𝑛2, 𝜇2)). Since these functions only act on their

term arguments and ignore their 𝜇 arguments, we invoke them using the abbreviated

2We define semantic “functions" to actually be relations (i.e.: partial nondetermistic functions)
so that this definition can be reused for abstract interpretation in Section 4.5.2.

191

notation

let 𝑛3 = +(𝑛1, 𝑛2) in rhs

which is short for let (𝑛3, 𝜇3) = +((𝑛1, 𝜇1), (𝑛2, 𝜇2)) in rhs, where 𝜇1, 𝜇2 are dummy

values, and 𝜇3 is an otherwise unused variable.

Semantic functions give straightened-operational-semantics notation a lot of flex-

ibility. They can be used to encode side-conditions, e.g.: “let true = isvalid(𝑥) in 𝑐”

would fail to match if 𝑥 is not valid. They may include external effects such as I/O.

As an example using semantic functions, the rule

𝑛 = 𝑣1 + 𝑣2
(𝑣1 + 𝑣2, 𝜇) ; (𝑛, 𝜇)

𝐴𝑑𝑑𝐸𝑣𝑎𝑙

would be rendered as

(𝑣1 + 𝑣2, 𝜇) ; let 𝑛 = +(𝑣1, 𝑣2) in (𝑛, 𝜇)

where the first occurrence of “+” refers to a nonval node of the object language, and

the second occurrence refers to a semantic function of the meta-language.

There are two extra non-syntactic requirements on SOS rules. The first makes

the value/term distinction meaningful, and is needed in the proofs:

Assumption 4.3.2 (Sanity of Values). The following must hold:

• For a rule, (𝑡, 𝑠) ; rhs, the pattern 𝑡 must not match a value.

• If 𝑡 is a nonvalue, there are 𝑠, 𝑡′, 𝑠′ such that (𝑡, 𝑠) ; (𝑡′, 𝑠′).

The second is necessary because nondeterministic languages lack a clear notion of

control-flow.

Assumption 4.3.3 (Determinism). For any 𝑡, 𝑠, there is at most one 𝑡′, 𝑠′ such that

(𝑡, 𝑠) ; (𝑡′, 𝑠′).

This assumption is not necessary for converting the semantics to PAM, which can

faithfully emulate any structural operational semantics. It is necessary for conversion

192

frame ::= [𝑐→ rhs]
𝐾 ::= emp (Contexts)

| 𝐾 ∘ frame
| 𝑘 (Context Vars)

↕ ::= ↑ | ↓ (Phase)
pamState ::=

⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕

pamRhs ::= pamState
| let 𝑐 = semfun(𝑐) in pamRhs

pamRule ::= pamState →˓ pamRhs

Figure 4-9: The Phased Abstract Machine

to an abstract machine, as abstract machines have difficulty expressing behaviors

with top-level nondeterminism. Intuitively, this is desirable. Nondeterminism means

that consecutive steps may occur in distant parts of a term: evaluating ((𝑎 * 𝑏) + (𝑐−
𝑑)) + (𝑒/𝑓) may e.g.: evaluate first the multiplication on the left, then the division

on the right, and then the subtraction on the left. It is difficult to imagine a notion

of control-flow for such a space of executions.

Overall, this notation gives a simple inductive structure to SOS rules. We will

see in Section 4.3.5 how it makes the SOS-to-PAM conversion straightforward. And

it loses very little generality from the conventional SOS notation: it essentially only

assumes that the premises can be ordered. (And converting this notation back into

the conventional form is easy: turn all RHS fragments into premises.)

4.3.3 The Phased Abstract Machine

In an SOS, a single step may involve many rules, and each rule may perform multiple

computations. The phased abstract machine (PAM) breaks each of these into distinct

steps. In doing so, it simulates how a recursive functional program would interpret

the operational semantics.

A PAM state takes the form
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕ . The configuration 𝑐 is the same as for

operational semantics. 𝐾 is a context or continuation, which represents the remainder

of an SOS right-hand side. The phase is the novel part. Each PAM state is either

193

C ::= � | let 𝑐 = semfun(𝑐) in 𝐶

Figure 4-10: Abstract Machine: RHS contexts

in the evaluating (“down”) phase ↓, or the returning (“up”) phase ↑; an arbitrary

phase is given the variable name “↕”. A down state
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ can be interpreted as

an intention for the PAM to evaluate 𝑐 in a manner corresponding to one step of the

operational semantics, yielding
⟨︀
𝑐′
⃒⃒
𝐾
⟩︀↑ . In fact, in Appendix B.1, we prove that a

single step 𝑐1 ; 𝑐2 in the operational semantics perfectly corresponds to a sequence

of steps
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓* ⟨︀

𝑐2
⃒⃒
𝐾
⟩︀↑ in the PAM.

The full syntax of PAM rules is in Figure 4-9. A PAM rule steps a left-hand state

into a right-hand state, potentially after invoking a sequence of semantic functions.

A PAM state contains a configuration, context, and phase. A context is a sequence

of frames, terminating in emp.

Note that a pamRhs consists of a sequence of RHS fragments which terminate in

a pamState
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕ . Figure 4-10 captures this into a notation for RHS contexts, so

that an arbitrary PAM rule may be written
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 →˓ 𝐶[
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↕2].

Finally, as alluded to in Section 4.2.1, a frame like [(𝑡′, 𝜇′)→ (𝑥 := 𝑡′, 𝜇′)] can be

abbreviated to [(𝑥 := �𝑡,�𝜇)], since 𝑡′ and 𝜇′ are variables (i.e.: no destructuring).

A PAM rule
⟨︀
𝑐𝑝
⃒⃒
𝐾𝑝

⟩︀↕𝑝 →˓𝑙 rhs𝑝 for language 𝑙 is executed on a PAM state
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 as follows:

1. Find a substitution 𝜎 such that 𝜎(𝑐𝑝) = 𝑐1, 𝜎(𝐾𝑝) = 𝐾1. Fail if no such 𝜎

exists, or if ↕𝑝 ̸=↕1.

2. Recursively evaluate rhs𝑝 as follows:

• If rhs𝑝 = let 𝑐ret = func(𝑐args) in rhs′𝑝, with func ∈ semfun𝑙, pick 𝑟 ∈
func(𝜎(𝑐args)), and extend 𝜎 to 𝜎′ s.t. 𝜎′(𝑐ret) = 𝑟 and 𝜎′(𝑥) = 𝜎(𝑥) for all

𝑥 ∈ dom(𝜎). Fail if no such 𝜎′ exists. Then recursively evaluate rhs′𝑝 on

𝜎′.

• If rhs𝑝 =
⟨︀
𝑐′𝑝
⃒⃒
𝐾 ′

𝑝

⟩︀↕′𝑝 , return the new PAM state
⟨︀
𝜎(𝑐′𝑝)

⃒⃒
𝜎(𝐾 ′

𝑝)
⟩︀↕′𝑝 .

194

amState ::=
⟨︀
𝑐
⃒⃒
𝐾
⟩︀

amRhs ::= amState | let 𝑐 = semfun(𝑐) in amRhs
amRule ::= amState→ amRhs

Figure 4-11: Abstract Machines

Let us give some example PAM rules. (An example execution will be in Section

4.3.6.) The AssnCong and AssnEval rules from Section 4.2.1 get transformed into

the following three rules:

⟨︀
(𝑥 := 𝑒, 𝜇)

⃒⃒
𝑘
⟩︀↓ →˓ ⟨︀

(𝑒, 𝜇)
⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀↓
⟨︀
(𝑡, 𝜇)

⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀↑ →˓ ⟨︀
(𝑥 := 𝑡, 𝜇)

⃒⃒
𝑘
⟩︀↑

⟨︀
(𝑥 := 𝑣, 𝜇)

⃒⃒
𝑘
⟩︀↓ →˓ ⟨︀

(skip, 𝜇[𝑥→ 𝑣])
⃒⃒
𝑘
⟩︀↑

The AssnCong rule becomes a pair of mutually-inverse PAM rules. One is a down

rule which steps a down state to a down state, signaling a recursive call. The other is

an up rule, corresponding to a return. This is a distinguishing feature of congruence

rules, and is an important fact used when constructing the final abstract machine.

Evaluation rules, on the other hand, typically become down-up rules. Note also that

frames may be able to store information: here, the frame [(𝑥 := �𝑡,�𝜇)] stores the

variable to be assigned, 𝑥.

The PAM and operational semantics share a language’s underlying semantic func-

tions. The AddEval rule of, for instance, Section 4.3.2 becomes the following PAM

rules:

⟨︀
(𝑣1 + 𝑣2, 𝜇)

⃒⃒
𝑘
⟩︀↓ →˓ let 𝑛 = +(𝑣1, 𝑣2) in

⟨︀
(𝑛, 𝜇)

⃒⃒
𝑘
⟩︀↓

⟨︀
(𝑣, 𝜇)

⃒⃒
𝑘
⟩︀↓ →˓ ⟨︀

(𝑣, 𝜇)
⃒⃒
𝑘
⟩︀↑

The latter rule becomes redundant upon conversion to an abstract machine, which

drops the phase.

195

4.3.4 Abstract Machines

Finally, the AM is similar to the PAM, except that an AM state does not contain a

phase. Figure 4-11 gives a grammar for AM rules. We gave example rules for the AM

for IMP in Section 4.2.1.

Summary of Notation This section has introduced three versions of semantics,

each defining their own transition relation. Mnemonically, as the step-relation gets

closer to the abstract machine, the arrow “flattens out.” They are:

1. 𝑐1 ; 𝑐2 (“squiggly arrow”) denotes one SOS step (Section 4.3.2).

2. 𝑐1 →˓ 𝑐2 (“hook arrow”) denotes one PAM step (Section 4.3.3).

3. 𝑐1 → 𝑐2 (“straight arrow”) denote one AM step (Section 4.3.4).

The conversion between PAM and AM introduces a fourth system, the unfused

abstract machine, which is identical to the AM except that some rules of the AM

correspond to several rules of the unfused AM. We thus do not distinguish it from

the orthodox AM, except in one of the proofs, where its transition relation is given

the symbol −→ (“long arrow”).

4.3.5 Splitting the SOS

In this section, we present our algorithm for converting an operational semantics to

PAM. Figure 4-12 defines the sosToPam function, which computes this transforma-

tion.

The algorithm generates PAM rules for each SOS rule. For each SOS rule 𝑐 ; rhs,

it begins in the state
⟨︀
𝑐
⃒⃒
𝑘
⟩︀↓ , the start state for evaluation of 𝑐. It then generates

rules corresponding to each part of rhs. For a semantic function, it transitions to a

down state, and begins the next rule in the same down state, so that they may match

in sequence. For a recursive invocation, it transitions to a down state
⟨︀
𝑐
⃒⃒
𝑘′⟩︀↓ , but

begins the next rule in the state
⟨︀
𝑐
⃒⃒
𝑘′⟩︀↑ , so that other PAM rules must evaluate 𝑐

before proceeding with computations corresponding to this SOS rule. Finally, upon

196

sosToPam(rules)

sosToPam(rules) =

⎛
⎝ ⋃︁

𝑟∈rules

sosRuleToPam(𝑟)

⎞
⎠

∪
{︀ ⟨︀

(𝑡, 𝑠)
⃒⃒
emp

⟩︀↑ →˓ ⟨︀
(𝑡, 𝑠)

⃒⃒
emp

⟩︀↓}︀
where 𝑡, 𝑠 are fresh variables

sosRuleToPam(rule)

sosRuleToPam(𝑐 ; rhs) = sosRhsToPam(
⟨︀
𝑐
⃒⃒
𝑘
⟩︀
↓, 𝑘, rhs) (1)

where 𝑘 is a fresh variable

sosRhsToPam(pamState,𝐾, rhs)

sosRhsToPam(𝑠, 𝑘, 𝑐) =
{︀
𝑠 →˓

⟨︀
𝑐
⃒⃒
𝑘
⟩︀↑}︀ (2)

sosRhsToPam(𝑠, 𝑘, let [𝑐1 ; 𝑐2] in rhs) =
{︀
𝑠 →˓

⟨︀
𝑐1

⃒⃒
𝑘′
⟩︀↓}︀ (3)

∪ sosRhsToPam(
⟨︀
𝑐2

⃒⃒
𝑘′
⟩︀↑ , 𝑘, rhs)

where 𝑘′ = 𝑘 ∘ [𝑐2 → rhs]
sosRhsToPam(𝑠, 𝑘, let 𝑐2 = f(𝑐1) in rhs) =

{︀
𝑠 →˓ let 𝑐2 = f(𝑐1) in

⟨︀
𝑐2

⃒⃒
𝑘′
⟩︀↓}︀ (4)

∪ sosRhsToPam(
⟨︀
𝑐2

⃒⃒
𝑘′
⟩︀↓ , 𝑘, rhs)

where 𝑘′ = 𝑘 ∘ [𝑐2 → rhs]

Figure 4-12: The SOS-to-PAM algorithm. Labels are used in the proofs of Appendix
B.1.

197

encountering the end of the step 𝑐, it transitions to a state
⟨︀
𝑐
⃒⃒
𝑘
⟩︀↑ , returning 𝑐 up

the stack.

For each step, it also pushes a frame containing the remnant of the SOS rhs onto

the context, both to help ensure rules may only match in the desired order, and

because the rhs may contain variables bound in the left-hand side, which must be

preserved across rules.

After the algorithm finishes creating PAM rules for each of the SOS rules, it adds

one special rule, called the reset rule:
⟨︀
(𝑡, 𝑠)

⃒⃒
emp

⟩︀↑ →˓ ⟨︀
(𝑡, 𝑠)

⃒⃒
emp

⟩︀↓ .

The reset rule takes a state which corresponds to completing one step of SOS

evaluation, and changes the phase to ↓ so that evaluation may continue for another

step. Note that it matches using a nonvalue-variable 𝑡 so that it does not attempt

to evaluate a term after termination. Note also that the LHS and RHS of the reset

rule differ only in the phase. The translation from PAM to abstract machine hence

removes this rule, as, upon dropping the phases, this rule would become a self-loop.

It is also removed in the proof of Theorem 4.4.1.

4.3.6 Cutting PAM

The PAM evaluates a term in lockstep with the original SOS rules. Yet, in both, each

step of computation always begins at the root of the term, rather than jumping from

one subterm to the next. By optimizing these extra steps away, our algorithm will

create the abstract machine from the PAM.

Consider how the PAM evaluates the term (1 + (1 + 1)) + 1, shown in Figure 4-13.

Notice how lines 4.6–4.7 mirror lines 4.8–4.9. After evaluating 1 + 1 deep within the

term, the PAM walks up to the root, and then back down the same path. Knowing

this, an optimized machine could jump directly from line 4.6 to 4.10.

This insight is similar to the one behind Danvy’s refocusing, which converts a

reduction semantics to an abstract machine [42]. But in the setting of PAM, the

necessary property becomes particularly simple and mechanical:

Definition 4.3.4. An up-rule
⟨︀
𝑐1

⃒⃒
𝐾1

⟩︀↑ →˓ 𝐶[
⟨︀
𝑐2

⃒⃒
𝐾2

⟩︀↑] is invertible if, for any 𝑐1

198

⟨︀
((1 + (1 + 1)) + 1,∅)

⃒⃒
emp

⟩︀↓ (4.1)
→˓

⟨︀
(1 + (1 + 1),∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇)]

⟩︀↓ (4.2)
→˓

⟨︀
(1 + 1,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇) ∘ [(1 +�𝑡, 𝜇)]]

⟩︀↓ (4.3)
→˓

⟨︀
(2,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇) ∘ [(1 +�𝑡,�𝜇)]]

⟩︀↓ (4.4)
→˓

⟨︀
(2,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇) ∘ [(1 +�𝑡,�𝜇)]]

⟩︀↑ (4.5)
→˓

⟨︀
(1 + 2,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇)]

⟩︀↑ (4.6)
→˓

⟨︀
((1 + 2) + 1,∅)

⃒⃒
emp

⟩︀↑ (4.7)
→˓

⟨︀
((1 + 2) + 1,∅)

⃒⃒
emp

⟩︀↓ (4.8)
→˓

⟨︀
(1 + 2,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇)]

⟩︀↓ (4.9)
→˓

⟨︀
(3,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇)]

⟩︀↓ (4.10)
→˓

⟨︀
(3,∅)

⃒⃒
emp ∘ [(�𝑡 + 1,�𝜇)]

⟩︀↑ (4.11)
→˓

⟨︀
(3 + 1,∅)

⃒⃒
emp

⟩︀↑ (4.12)
→˓

⟨︀
(3 + 1,∅)

⃒⃒
emp

⟩︀↓ (4.13)
→˓

⟨︀
(4,∅)

⃒⃒
emp

⟩︀↓ (4.14)
→˓

⟨︀
(4,∅)

⃒⃒
emp

⟩︀↑ (4.15)

Figure 4-13: Example PAM derivation.

199

nonvalue,
⟨︀
𝑐2

⃒⃒
𝐾2

⟩︀↓ →˓* ⟨︀
𝑐1

⃒⃒
𝐾1

⟩︀↓ .

If an up-rule and its corresponding down-rules do not invoke any semantic func-

tions, invertibility can be checked automatically via a reachability search. When all

up-rules are invertible, we can show that
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↓ whenever 𝑐 is a non-

value, meaning that these transitions may be skipped (Lemma B.1.5). This means

that all up-rules are redundant unless the LHS is a value, and hence they can be spe-

cialized to values. The phases now become redundant and can be removed, yielding

the first abstract machine.

The last requirement for an abstract machine to be valid is not having any up-

down rules, rules of the form
⟨︀
𝑐
⃒⃒
𝑘
⟩︀↑ →˓ 𝐶[

⟨︀
𝑐′
⃒⃒
𝑘′⟩︀↓]. An up-down rule follows from

any SOS rule which simultaneously steps multiple subterms, and are not found in

typical semantics. An example SOS rule which does result in an up-down rule is this

lockstep-composition rule:

𝑒1 ; 𝑒′1 𝑒2 ; 𝑒′2
𝑒1 ‖ 𝑒2 ; 𝑒′1 ‖ 𝑒′2

𝐿𝑜𝑐𝑘𝑠𝑡𝑒𝑝𝐶𝑜𝑚𝑝

The LockstepComp rule differs from normal parallel composition, in that both

components must step simultaneously. Up-down rules like this break the locality of

the transition system, meaning that whether one subterm can make consecutive steps

may depend on different parts of the tree. Correspondingly, it also means that a

single step of the program may step multiple parts of the tree, making it difficult to

have a meaningful notion of program counter.

Most of the time, the presence of an up-down rule will also cause some up-rules to

not be invertible, making a prohibition on up-down rules redundant. However, there

are pathological cases where this is not so. For example, consider the expression

𝑒1 ‖ 𝑒2 with the LockstepComp rule. The LockstepComp rule splits into 3 PAM

rules, of which the third is an up-rule,
⟨︀
𝑒′2

⃒⃒
𝑘 ∘ [𝑒′1 ‖ �]

⟩︀↑ →˓ ⟨︀
𝑒′1 ‖ 𝑒′2

⃒⃒
𝑘
⟩︀↑ . If it is

possible for 𝑒′1 to be a value but not 𝑒′2, then this rule is not invertible. However, if

𝑒1 ; 𝑒1 and 𝑒2 ; 𝑒2 for all 𝑒1, 𝑒2, then this rule is invertible. Hence, the PAM-to-AM

algorithm includes an additional check that there are no up-down rules save the reset

200

rule.

Algorithm: PAM to Unfused Abstract Machine

1. Check that all up-rules for 𝑙 are invertible. Fail if not.

2. Check that there are no up-down rules other than the reset rule. Fail if not.

3. Remove the reset rule.

4. For each up-rule with LHS
⟨︀
(𝑡, 𝑠)

⃒⃒
𝐾
⟩︀↑ , unify 𝑡 with a fresh value variable.

The resulting 𝑡′ will either have a value node at the root, or will consist of a

single value variable. If 𝑡 fails to unify, remove this rule.

5. Remove all rules of the form
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ →˓ ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↑ , which would become self-

loops.

6. Drop the phase ↕ from the pamState’s in all rules

Fusing the Abstract Machine This unfused abstract machine still takes more

intermediate steps than a normal abstract machine. The final abstract machine is

created by fusing successive rules together. A rule
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
→ 𝐶1[

⟨︀
𝑐′1
⃒⃒
𝐾 ′

1

⟩︀
] is fused

with a rule
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
→ 𝐶2[

⟨︀
𝑐′2
⃒⃒
𝐾 ′

2

⟩︀
] by unifying (𝑐′1, 𝐾

′
1) with (𝑐2, 𝐾2), and replacing

them with the new rule
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
→ 𝐶1[𝐶2[

⟨︀
𝑐′2
⃒⃒
𝐾 ′

2

⟩︀
]].

Property 4.3.5 (Fusion). Consider two AM rules F and G, and let their fusion be

FG. Then
⟨︀
𝑐
⃒⃒
𝐾
⟩︀ 𝐹→

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ 𝐺→

⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀ if and only if

⟨︀
𝑐
⃒⃒
𝐾
⟩︀ 𝐹𝐺→

⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀.

There are two cases where rules should be fused. First, considering Figure 4-12,

rules which invoke a semantic function always have only one possible successor rule,

and should be fused. Without this, the abstract machine for AddEval would have an

extra state for after it invokes the semantic computation +(𝑛1, 𝑛2), but before it plugs

the result into a term. Second, up-rules should be fused with all possible successors.

Without this, computing 𝑒1 + 𝑒2 would have an extra state where, after evaluating

𝑒1, it revisits 𝑒1 + 𝑒2, rather than jumping straight into evaluating 𝑒2. Both steps are

201

strictly optional. However, doing so generates abstract machine rules which match

the standard versions (as in e.g.: [54]), and also generate more intuitive control-flow

graphs.

For example, here are the final rules for assignment:

⟨︀
(𝑥 := 𝑒, 𝜇)

⃒⃒
𝑘
⟩︀
→

⟨︀
(𝑒, 𝜇)

⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀
⟨︀
(𝑣, 𝜇)

⃒⃒
𝑘 ∘ [(𝑥 := �𝑡,�𝜇)]

⟩︀
→

⟨︀
(skip, 𝜇[𝑥→ 𝑣])

⃒⃒
𝑘
⟩︀

And here are the final rules for addition:

⟨︀
(𝑒1 + 𝑒2, 𝜇)

⃒⃒
𝐾
⟩︀
→

⟨︀
(𝑒1, 𝜇)

⃒⃒
𝐾 ∘ [(�𝑡 + 𝑒2,�𝜇)]

⟩︀
⟨︀
(𝑣, 𝜇)

⃒⃒
𝐾 ∘ [(�𝑡 + 𝑒,�𝜇)]

⟩︀
→

⟨︀
(𝑒, 𝜇)

⃒⃒
𝐾 ∘ [(𝑣 +�𝑡,�𝜇)]

⟩︀
⟨︀
(𝑣2, 𝜇)

⃒⃒
𝐾 ∘ [(𝑣1 +�𝑡,�𝜇)]

⟩︀
→ let 𝑛 = +(𝑣1, 𝑣2) in

⟨︀
(𝑛, 𝜇)

⃒⃒
𝐾
⟩︀

4.4 Correctness

This section provides the correspondence between the operational semantics and ab-

stract machine. We present only the high-level theorems here, with the proofs avail-

able in Appendix B.1.

The core idea of the correspondence is simple: The PAM emulates the SOS because

each PAM rule was explicitly constructed to correspond to an RHS fragment of the

SOS:

Theorem 4.4.1. 𝑐1 ;*
𝑙 𝑐2 if and only if, for all contexts 𝐾,

⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙

⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑

The PAM and AM are equivalent because the AM merely removes redundant steps

from the PAM, and because fused rules in the AM each correspond to several rules

in the PAM. However, a PAM derivation may have “false starts" corresponding to

a partially-applied SOS rule, and so we first give some technical definitions that

determine which states are included in the correspondences.

Stuck States The first kind of “false start" comes from steps that cannot be com-

pleted.

202

Definition 4.4.2. A configuration/context pair (𝑐,𝐾) is non-stuck if
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓*

𝑙⟨︀
𝑐′
⃒⃒
emp

⟩︀↑ for some 𝑐′.

Because each PAM rule corresponds to part of an SOS rule, our definition of

non-stuckness is different from the usual one: it is intended to exclude terms which

correspond to a partial match on an SOS rule. A single step 𝑐1 ; 𝑐2 in the SOS

corresponds to a sequence
⟨︀
𝑐1
⃒⃒
emp

⟩︀↓ →˓* ⟨︀
𝑐2
⃒⃒
emp

⟩︀↑ in the PAM, so a state is

non-stuck if it can complete the current step. Stuck states result from SOS rules

which only partially match a term. For example, the SOS rule

(𝑎.𝑏 := 𝑣, 𝜇) ; let (𝑟, 𝜇′) = Lookup((𝑎, 𝜇)) in let false = ContainsField(𝑟, 𝑏) in (error, 𝜇)

decomposes into 3 PAM rules. If Lookup succeeds, the first brings
⟨︀
(𝑎.𝑏 := 𝑣, 𝜇)

⃒⃒
𝐾
⟩︀↓

into the state

⟨︀
(𝑟, 𝜇′)

⃒⃒
𝐾 ∘ [let false = ContainsField(�𝑡, 𝑏) in (error, 𝜇)]

⟩︀↓

If false ̸= ContainsField(𝑟, 𝑏), then this will be a stuck state.

Working Steps As seen in the example in Section 4.3.6, many steps get removed

when converting from PAM to AM. This causes the second form of “false start."

Definition 4.4.3. An inversion sequence beginning at
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ is a sequence of

transitions
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↓ which contains at most one application of the reset

rule.

The idea of an inversion sequence partitions a derivation
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↓ →˓* ⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↓
into two parts: the inversion sequences, which do redundant work, and the remainder,

which we call the working steps. A PAM state inside an inversion sequence might

not correspond to any AM state.

Definition 4.4.4. A reduction
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 →˓
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↕2 within a derivation is a

working step if the derivation cannot be extended so that
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 is part of an

inversion sequence.

203

PAM-AM Correspondence The PAM and AM correspond as follows, via the

Unfused AM.

Theorem 4.4.5 (PAM-Unfused AM: Forward). Suppose
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↓ ,

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↓ is non-stuck, and the derivation’s last step is working. Then there is a

derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀.

Theorem 4.4.6 (PAM-Unfused AM: Backward). If
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀, then there

are phases ↕𝑐 and ↕𝑐′ such that
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ .

Reductions in the Unfused AM correspond to reductions in the normal AM unless

the last rules used in the Unfused AM have been fused away.

Theorem 4.4.7 (Unfused AM-AM).
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ if and only if

⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ by a sequence of rules whose last rule is not fused away.

4.5 Control-flow Graphs as Abstractions

The abstract machine is a transition system describing all possible executions of a

program. Applying an abstract interpretation shrinks this to a finite one. Some

abstractions yield a graph resembling a traditional CFG (Section 4.5.3).

Yet to compute on abstract states, one must also abstract the transition rules,

and this traditionally requires manual definitions. Fortunately, we will find that the

desired families of CFG can be obtained by a specific class of syntactic abstraction

which allow the transition rules to be abstracted automatically, via abstract rewrit-

ing (Section 4.5.1–Section 4.5.2). After constructing the abstract transition graph,

more control can be obtained by further combining states using a projection function

(Section 4.5.4). A final choice of control-flow graph is then obtained by an abstrac-

tion/projection pair (𝛼, 𝜋).

The development of abstract-rewriting in this section is broadly similar to that of

Bert et al [14], but departs greatly in details to fit our formalism of terms and ma-

chines. In Section 4.6, we explore connections to an older technique called narrowing.

204

4.5.1 Abstract Terms, Abstract Matching

Our goal is to find a notion of abstract terms flexible enough to allow us to express

desired abstraction functions, but restricted enough that we can find a way to auto-

matically apply the existing abstract machine rules to them. We accomplish this by

defining a set of generalized terms term⋆, satisfying term ⊂ term⋆, where some nodes

have been replaced with ⋆ nodes which represent any term.

term⋆ ::= nonval(sym, term⋆) | val(sym, term⋆)

| const | 𝑥 | ⋆mt

Here, mt is a match type (Figure 4-7), so that the allowed ⋆ nodes are ⋆Val, ⋆NonVal,

and ⋆All. Formally, we define an ordering ≺ on term⋆ as the reflexive, transitive,

congruent closure of an ordering ≺′, defined by the following relations for all 𝑡, 𝑠, 𝑡:

nonval(𝑠, 𝑡) ≺′ ⋆NonVal val(𝑠, 𝑡) ≺′ ⋆Val 𝑡 ≺′ ⋆All

A join operator 𝑡1⊔𝑡2 then follows as the least upper bound of 𝑡1 and 𝑡2. For instance,

(𝑥 := 1 + 1) ⊔ (𝑦 := 2 + 1) = (⋆Val := ⋆Val +1). We can then define the set of concrete

terms represented by ̂︀𝑡 ∈ term⋆ as:

𝛾
(︀̂︀𝑡
)︀

=
{︀
𝑡 ∈ term|𝑡 ≺ ̂︀𝑡

}︀

The power of this definition of term⋆ is that it allows abstract matching, which al-

lows the rewriting machinery behind abstract machines to be automatically lifted to

abstract terms.

Definition 4.5.1 (Abstract Matching). A pattern 𝑡𝑝 ∈ term matches an abstract term

̂︀𝑡 ∈ term⋆ if there is at least one 𝑡 ∈ 𝛾(̂︀𝑡) and substitution 𝜎𝑡 such that 𝜎𝑡(𝑡𝑝) = 𝑡. The

witness of the abstract match is a substitution ̂︀𝜎 defined:

̂︀𝜎(𝑥) =
⨆︁{︀

𝜎𝑡(𝑥)|𝑡 ∈ 𝛾
(︀̂︀𝑡
)︀
∧ 𝜎𝑡(𝑡𝑝) = 𝑡

}︀

205

For example, the abstract term ⋆All matches the pattern 𝑣1 + 𝑣2 with a witness ̂︀𝜎
with ̂︀𝜎(𝑣1) = ̂︀𝜎(𝑣2) = ⋆Val. We are now ready to state the main property of abstract

matching.

Property 4.5.2 (Abstract Matching (for terms)). Let 𝑡𝑝 be a pattern, and 𝑡 ∈ term

be a matching term, so that there is a substitution 𝜎 with 𝜎(𝑡𝑝) = 𝑡. Consider a

𝑡′ ∈ term⋆ such that 𝑡′ ≻ 𝑡. Then 𝑡′ matches 𝑡𝑝 with witness 𝜎′, where 𝜎′ satisfies

𝜎(𝑥) ≺ 𝜎′(𝑥) for all 𝑥 ∈ dom(𝜎) = dom(𝜎′), and 𝑡 ≺ 𝜎′(𝑡𝑝).

We assume there is some external definition of abstract reduction states Ŝtate𝑙

(discussed in Section 4.5.2). After doing so, the definitions of abstract terms and

states can be lifted to abstract configurations Conf⋆𝑙, lists of abstract configurations

Conf⋆, contexts Context⋆, abstract machine states amState⋆, and abstract semantic

functions semfun⋆𝑙, etc by transitively replacing all instances of term and State𝑙 in

their definitions with term⋆ and Ŝtate𝑙. Abstract matching and the Abstract Match-

ing Property are lifted likewise. To define abstract rewriting, we need a few more

preliminaries.

4.5.2 Abstract Rewriting

Abstract rewriting works by taking the (P)AM execution algorithm of Section 4.3.3,

and using abstract matching in place of regular matching. Doing so effectively simu-

lates the possible executions of an abstract machine on a large set of terms. To define

it, we must extend ≺ to other components of an abstract machine state.

First, we assume there is some externally-defined notion of abstract reduction

states Ŝtate𝑙 ⊇ State𝑙 with ordering ≺. There must also be a notion of substitu-

tion satisfying 𝜎1(𝑠) ≺ 𝜎2(𝑠) for 𝑠 ∈ Ŝtate𝑙 if 𝜎1(𝑥) ≺ 𝜎2(𝑥) for all 𝑥 ∈ dom(𝜎1).

Finally, there must be an abstract matching procedure for states satisfying the Ab-

stract Matching Property. In the common case where State𝑙 is the set of environments

mapping variables to terms, this all follows by extending the normal definitions above

to associative-commutative-idempotent terms.

We can now abstract matching and the≺ ordering over abstract contexts Context⋆,

206

abstract configurations Conf⋆𝑙, and lists of abstract configurations Conf⋆𝑙 via congru-

ence. We extend ≺ over sets of configurations P(Conf⋆𝑙) via the multiset ordering [48]

, and extend ≺ over semantic functions pointwise, i.e.: for 𝑓1, 𝑓2 ∈ semfun𝑙, 𝑓1 ≺ 𝑓2

iff 𝑓1(𝑥) ≺ 𝑓2(𝑥) for all 𝑥 ∈ Conf⋆𝑙.

Because normal AM execution may invoke an external semantic function, we need

some way to abstract the result of semantic functions. We assume there is some

externally-defined set ̂semfun𝑙. Abstract rewriting will be hence parameterized over a

“base abstraction” 𝛽 : semfun𝑙 → ̂semfun𝑙, satisfying the following property:

𝛽(𝑓)(̂︀𝑐) ≻
⋃︁
{𝑓(𝑐)|𝑐 ∈ 𝛾(̂︀𝑐)}

Informally, this condition means that running the abstracted function 𝛽(𝑓) over

a list of abstract configurations must produce an output which abstracts all possible

outputs from running 𝑓 on the concrete configurations 𝛾(̂︀𝑐). For example, let 𝑓 be the

addition function 𝑓((𝑡1, 𝜇1), (𝑡2, 𝜇2)) = {(𝑡1 + 𝑡2,∅)} when 𝑡1, 𝑡2 are integers, and {}
otherwise. Define 𝛽(𝑓)(𝑐1, 𝑐2) = {(⋆Val,∅)}. Then 𝛽(𝑓) satisfies this condition: the

possible concrete states are 𝑆 = {. . . , (−1,∅), (0,∅), (1,∅), . . . }, and {(⋆Val,∅)} ≻ 𝑆

due to our use of the multiset ordering in the construction of ≻ (i.e.: (⋆Val,∅) ≻ 𝑠

for all 𝑠 ∈ 𝑆).

We are now ready to present abstract rewriting. An AM rule
⟨︀
𝑐𝑝
⃒⃒
𝐾𝑝

⟩︀
→𝑙 rhs𝑝

for language 𝑙 is abstractly executed on an AM state
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
using base abstraction

𝛽 as follows:

1. Compute the abstract match of
⟨︀
𝑐𝑝
⃒⃒
𝐾𝑝

⟩︀
and

⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
, giving witness ̂︀𝜎; fail if

they do not abstractly match.

2. Recursively evaluate rhs𝑝 as follows:

• If rhs𝑝 = let 𝑐ret = func(𝑐args) in rhs′𝑝, with func ∈ semfun𝑙, then pick

𝑟 ∈ 𝛽(func)(̂︀𝜎(𝑐args)) and compute ̂︀𝜎𝑟 as the witness of abstractly matching

𝑐ret against 𝑟. Define ̂︀𝜎′ by ̂︀𝜎′(𝑥) = ̂︀𝜎(𝑥) for 𝑥 ∈ dom(̂︀𝜎), and ̂︀𝜎′(𝑦) = ̂︀𝜎r(𝑦)

for 𝑦 ∈ dom(̂︀𝜎r). Fail if no such ̂︀𝜎′ exists. Then recursively evaluate rhs′𝑝

207

using ̂︀𝜎′ as the new witness.

• If rhs𝑝 =
⟨︀
𝑐′𝑝
⃒⃒
𝐾 ′

𝑝

⟩︀
, return the new abstract AM state

⟨︀
̂︀𝜎(𝑐′𝑝)

⃒⃒
̂︀𝜎(𝐾 ′

𝑝)
⟩︀
.

If
⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
steps to

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
by abstractly executing an AM rule with base abstrac-

tion 𝛽, we say that
⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
̂︁→
𝛽

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
. Here is the fundamental property relating

abstract and concrete rewriting:

Lemma 4.5.3 (Lifting Lemma). If
⟨︀
𝑐1

⃒⃒
𝐾1

⟩︀
≺

⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
, and

⟨︀
𝑐1

⃒⃒
𝐾1

⟩︀
→

⟨︀
𝑐2

⃒⃒
𝐾2

⟩︀

by rule F, then, for any 𝛽, there is a
⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
such that

⟨︀
𝑐2

⃒⃒
𝐾2

⟩︀
≺

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
and

⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
̂︁→
𝛽

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
by 𝐹 .

Note that, if 𝛽 is the identity function, then ̂︁→
𝛽

is the same as →. Hence, the

Lifting Lemma theorem follows from a more general statement.

Lemma 4.5.4 (Generalized Lifting Lemma). Let 𝛽1, 𝛽2 be base abstractions where 𝛽1

is pointwise less than 𝛽2, i.e.: 𝛽1(𝑓)(𝑐) ≺ 𝛽2(𝑓)(𝑐) for all 𝑓, 𝑐. Suppose
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
≺⟨

̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
, and also

⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
̂︁→
𝛽1

⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
by rule F. Then there is a

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
such

that
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
≺

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
and

⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
̂︁→
𝛽2

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
by rule 𝐹 .

Proof. See Appendix B.2.

4.5.3 Machine Abstractions

This section finally ties the knot on the adage “CFGs are an abstraction of control-

flow” by defining the relation between a program’s actual control flow (the concrete

state transition graph) and its finite CFG. Intuitively, this relation involves skipping

intermediate steps and combining states that correspond to the same program point.

Yet getting the details right is tricky.

The simple function call f() exemplifies the difficulties of defining this relationship.

Running f() may evaluate arbitrary code. (In the language of abstract rewriting,

without context on f, it evaluates to an arbitrary program ⋆NonVal.) An intraprocedural

CFG generator must generate a small fixed number of nodes (typically, 1 evaluation

node or part of a basic-block node) to represent the call to f(); any additional nodes

208

depending on the definition of f makes it no longer intraprocedural. It must then

choose to either (1) draw edges through these nodes continuing onwards, or (2) when

f() provably does not terminate, it may optionally draw edges into but not out of these

nodes. Under a naive “combine states and skip steps” definition of valid abstraction,

an intraprocedural CFG-generator must first perform an interprocedural termination

analysis to be sound. And if f() only conditionally diverges, then both options are

incorrect.

We shall present a relation which does indeed justify abstracting f() to ⋆Val, using

a definition with subtle treatment of nontermination and branching. The upshot

of this work is the ability to write control-flow abstractions with formal guarantees

whose actual implementation is trivial; abstracting function calls as described here is

but a small modification to the 5 lines of Figure 4-6. And, in spite of the definition’s

complexity, actually showing a candidate abstraction meets the definition is usually

trivial.

Over the next paragraphs, we develop the abstraction preorder 𝑎 ⊑ 𝑏 between

abstract states. From this, we obtain our first formal definition of a CFG: when

𝐺 is the concrete transition graph for some program 𝑃 , and 𝐻 is a finite abstract

transition graph, every state in 𝐺 is ⊑ some state in 𝐻, and every state in 𝐻 is ⊒
some state in 𝐺, then 𝐻 is a valid CFG for 𝑃 .

The (⊑) relation is built from three smaller relations. Clearly, (⊑) must contain

the (≺) ordering, so that a single CFG node may describe concrete states that differ

only in values. It should be able to ignore some steps of computation (e.g.: desug-

aring a while-loop), and so should involve (̂︁→
𝛽
). It also must be able to skip over

loops regardless of termination. We define the (▷) relation to skip over infinite loops.

Intuitively, 𝑎 =
⟨

(̂︀𝑡, ̂︀𝜇)
⃒⃒ ̂︀𝐾

⟩
▷
⟨

(⋆Val,⊤)
⃒⃒ ̂︀𝐾 ′

⟩
if ⊤ is the “any” state (i.e.: overapprox-

imates all possible effects) and all executions of 𝑎 get “trapped” in some part of the

program, with ̂︀𝐾 ′ never getting popped off the stack.

Definition 4.5.5 (Nontermination-cutting ordering). Let ⊤𝑙 be a maximal element

of Ŝtate𝑙. Consider a state 𝑎 =
⟨

(̂︀𝑡, ̂︀𝑠)
⃒⃒ ̂︀𝐾

⟩
∈ amState⋆, and let ̂︀𝐾 ′ be a subcontext

of ̂︀𝐾. Suppose that, for all
⟨︀
(𝑡, 𝑠)

⃒⃒
𝐾
⟩︀
≺ 𝑎, and for all derivations of the form

209

⟨︀
(𝑡, 𝑠)

⃒⃒
𝐾
⟩︀
→* ⟨︀(𝑡′, 𝑠′)

⃒⃒
𝐾 ′⟩︀, either 𝐾 is a subterm of 𝐾 ′, or there is a subderivation

of the form
⟨︀
(𝑡, 𝑠)

⃒⃒
𝐾
⟩︀
→* ⟨︀(𝑡′′, 𝑠′′)

⃒⃒
𝐾
⟩︀

such that 𝑡′′ ≺ ⋆Val. Then 𝑎▷
⟨

(⋆Val,⊤𝑙)
⃒⃒ ̂︀𝐾 ′

⟩
.

If 𝑎 does not satisfy this condition, then @𝑎′.𝑎 ▷ 𝑎′.

We now combine the (≺), (▷), and (̂︁→
𝛽
) orderings to fully describe what an ab-

straction may do. The naive approach would be to take the transitive closure of

(≺) ∪ (▷) ∪ (̂︁→
𝛽

). But this would permit abstracting
⟨︀
if ⋆Val then 𝐴 else 𝐵

⃒⃒
𝐾
⟩︀

to
⟨︀
𝐴
⃒⃒
𝐾
⟩︀
! Instead:

Definition 4.5.6 (Ordering ⊑ of amState⋆). The relation ⊑ is defined inductively as

follows: 𝑎 ⊑ 𝑏 if any of the following hold:

1. 𝑎 = 𝑏

2. For some 𝑐, 𝑎 ≺ 𝑐 and 𝑐 ⊑ 𝑏

3. For some 𝑐, 𝑎 ▷ 𝑐 and 𝑐 ⊑ 𝑏

4. For all 𝑐 such that 𝑎 ̂︁→
𝛽
𝑐, 𝑐 ⊑ 𝑏

We can now define an abstract machine abstraction to be a pair (𝛼, 𝛽), where 𝛽

is a base abstraction and 𝛼 : amState⋆ → amState⋆ is a function which is an upper

closure operator under the ⊑ ordering, meaning it is monotone and satisfies 𝑥 ⊑ 𝛼(𝑥)

and 𝛼(𝛼(𝑥)) = 𝛼(𝑥). It is well-known that such an upper closure operator establishes

a Galois connection between amState⋆ and the image of 𝛼, 𝛼(amState⋆) [124]. We will

assume that every 𝛼 is associated with a unique 𝛽, and will abbreviate the machine

abstraction (𝛼, 𝛽) as just 𝛼. Appendix B.3 adds a few additional technical restrictions

on 𝛼. These restrictions have no bearing on interpreted-mode graph generation, but

do rule out some pathological cases in the correctness proofs for compiled-mode graph

generation.

We now define the abstract transition relation ̂︁→
𝛼

for 𝛼 as: if 𝑎 ̂︁→
𝛽

𝑏, then 𝑎 ̂︁→
𝛼

𝛼(𝑏).

We now state the fundamental theorem of abstract transitions, proved in Appendix

B.2.

210

Theorem 4.5.7 (Abstract Transition). For 𝑎, 𝑏 ∈ amState, if 𝛼 is an abstraction

with base abstraction 𝛽, and 𝑎→ 𝑏, then either 𝑏 ⊑ 𝛼(𝑎), or ∃𝑔 ∈ amState ⋆ . 𝛼(𝑎) ̂︁→
𝛼

𝑔 ∧ 𝑏 ⊑ 𝑔.

Following are some example abstractions.

Abstraction: Value-Irrelevance The value-irrelevance abstraction (code in Fig-

ure 4-6) maps each node val(sym, 𝑡) and each constant to ⋆Val, and each semantic

function to the constant 𝑥 ↦→ ⋆Val. Combining this with the abstract machine for

IMP yields an expression-level control-flow graph, as in Figure 4-2b. Tiger and

MITScript use a modified version described at the beginning of this section, which

also abstracts all function calls to ⋆Val.

Abstraction: Expression-Irrelevance This abstraction is like value-irrelevance,

but it also “skips” the evaluation of expressions by mapping any expression under focus

to ⋆Val. In doing so, it overapproximates modifications to the state from running 𝑒;

the easiest implementation is to add the mapping [⋆Val ↦→ ⋆Val]. Combining this with

an abstract machine yields a statement-level control-flow graph.

The Boolean-Tracking Abstraction This abstraction is similar to the value-

irrelevance abstraction, except that it preserves some true and false values. It differs

in two ways: (1) boolean-valued semantic functions such as < nondeterministically

return {true, false}, (2) for a configuration (𝑡, 𝜇), it preserves all true and false

values in 𝑡, as well as the value of 𝜇(𝑣) for each 𝑣 in a provided set of tracking

variables 𝑉 . Including the variable “b” in the tracked set, and combining this with

the basic-block projection (Section 4.5.4) yields the path-sensitive control-flow graph

seen in Figure 4-2c.

As a limitation, note that this abstraction (nor any other abstraction of program

state) does not give an account of path-sensitive analyses, which may assign different

program points to states with identical values and identical continuations. This could

be rectified by including information about the computation history as part of the

211

program state, as in the history machines we developed in a different work [97].

4.5.4 Projections

A projection, also called a quotient map, is a function 𝜋 : amState⋆→ amState⋆.

They are used after constructing the initial CFG to merge together extra nodes,

resulting in a blown-down graph.

The definition below comes from §5.4 of Manolios [114], which presented it in

the context of bisimulations. It differs slightly from the standard graph-theoretic

definitions, in that it has an extra condition to prevent spurious self-loops.

Definition 4.5.8. Let (𝑉,𝐸) be a graph with 𝑉 ⊆ amState⋆, 𝐸 ⊆ (amState⋆2). Let 𝜋

be a projection. Then the projected graph (or quotient graph) is the graph (𝑉 ′, 𝐸 ′)

satisfying:

1. 𝑉 ′ = 𝜋(𝑉)

2. For 𝑎 ̸= 𝑏, (𝑎, 𝑏) ∈ 𝐸 ′ iff there is (𝑐, 𝑑) ∈ 𝐸 such that (𝑎, 𝑏) = (𝜋(𝑐), 𝜋(𝑑)).

3. (𝑎, 𝑎) ∈ 𝐸 ′ iff, for all 𝑏 ∈ 𝑉 such that 𝜋(𝑏) = 𝑎, there is 𝑐 ∈ 𝑉 such that

(𝑏, 𝑐) ∈ 𝐸.

Many of the uses of projections could be accomplished by instead using a coarser

abstraction. However, projections have the advantage that they have no additional

requirements to prove: they can be any arbitrary function. The addition of projections

gives our final definition of a CFG: when 𝐺 is the concrete transition graph for some

program 𝑃 , and 𝐻 is a finite abstract transition graph, and every state in 𝐺 is ⊑
some state in 𝐻 and vice versa, then for any projection 𝜋, the projected graph of 𝐻

under 𝜋 is a valid CFG for 𝑃 . In short, a CFG is a projection of the transition

graph of abstracted abstract machine states.

Projections can be defined either manually, or automatically by the graph-pattern

code generator (Section 4.6), and are most often used to hide internal details of a

language’s semantics, such as in the graph pattern of Figure 4-3, which merges away

212

the internal steps of a while-loop which are mere artifacts of the SOS rules. But one

important projection goes further:

Projection: Basic Block The basic-block projection inputs
⟨︀
𝑐
⃒⃒
𝐾
⟩︀

and removes

all but the last top-level sequence-nodes from 𝑐 and 𝐾, essentially identifying each

statement of a basic-block with the last statement in the block. In combination with

the expression-irrelevance abstraction, this yields the classic basic-block control-flow

graph, as in Figure 4-2a.

The correspondence between operational semantics and basic-block control-flow

graphs is then given by Definition 4.5.8 and Theorems 4.4.1, 4.4.5, 4.4.6, and 4.5.7.

4.5.5 Termination

Will the interpreted-mode CFG-generation algorithm terminate in a finite control-

flow graph? If the abstraction used is the identity, and the input program may have

infinitely many concrete states, the answer is a clear no. If the abstraction reduces

everything to ⋆Val, the answer is a clear yes. In general, it depends both on the

abstraction as well as the rules of the language.

If CFG-generation terminates for a program P, that means there are only finitely-

many states reachable under the ̂︁→
𝛼

relation from P’s start state. Term-rewriting

researchers call this property “global finiteness,” and have proven it is usually equiv-

alent to another property, “quasi-termination” [48]. While the literature on these

properties can help, there must still be a separate proof for the termination of CFG

-generation for every language/abstraction pair. Such a proof may be a tedious one

of showing that e.g.: every while-loop steps to if 𝑒 then 𝑠; while 𝑒 do 𝑠 else skip,

which eventually steps back to while 𝑒 do 𝑠, and never grows the stack.

Fortunately, for abstractions which discard context, the graph-pattern generation

algorithm of Section 4.6 does this analysis automatically. Because the transitions

discovered by abstract rewriting for a specific program are a subset of the union

of graph patterns for all AST nodes in that program, we discuss in Section 4.6.1

and prove in Appendix B.3 that, if graph-pattern generation for a given language

213

and abstraction terminates, then so does interpreted-mode CFG generation for all

programs.

4.6 Syntax-Directed CFG Generators

Although it may sound like a large leap to go from generating CFGs for specific

programs to statically inferring the control-flow of every possible node, it is actually

only little more than running the CFG-generation algorithm of Section 4.5 on a term

with variables. Indeed, the core implementation in Mandate is only 22 lines of code.

Hence, the description in Section 4.2.3 was already mostly complete, and we have only

a few details to add. Correctness results are given in Appendix B.3.

There are two primary points of simplification in Section 4.2.3. First, it did not

explain how to run AM rules on terms with variables. Second, it ignored match types.

Executing Terms with Variables Abstract rewriting can discover that ⋆NonVal +

⋆NonVal steps to a state that executes a ⋆NonVal, but it cannot tell you which ⋆NonVal it

executes first. Yet there is a simple way to determine if an AM state with variables

could be instantiated to match the LHS of an AM rule: if they unify. The result is

then the RHS of the rule with the substitution applied. This shows that, from the

term 𝑎NonVal + 𝑏NonVal, 𝑎NonVal is evaluated first.

This operation is called narrowing, used since 1975 in decision procedures [103]

and functional-logic programming. We present a variant of narrowing which makes it

suitable for abstract interpretation of semantics: we say that 𝑓 𝑔 if, for some rule

𝑥 → 𝑦, 𝑓 and 𝑥 unify by substitution 𝜎, and 𝑔 = 𝜎(𝑦). The resulting relation ̂︁
𝛼

is

defined identically to the development of ̂︁→
𝛼

given in Section 4.5.2 and Section 4.5.3,

except that the witness ̂︀𝜎 is computed by unification instead of by matching.

Note that the abstract-rewriting of Section 4.5 can be viewed as an overapproxima-

tion of our version of narrowing that follows each narrowing step with an abstraction

that replaces each occurrence of the same with distinct fresh variables (i.e.: ⋆ nodes),

along with extensions to handle match types and semantic functions.

214

Our abstract rewriting differs from conventional narrowing in an important way.

Conventional narrowing is actually a ternary relation. Example: the rule 𝑓(𝑓(𝑥))→
𝑥 enables the derivation 𝑓(𝑦) [𝑦 ↦→𝑓(𝑦′)] 𝑦′, with the unifying substitution as the

third component of the relation. We turn it into a binary relation by applying the

substitution on the right, and ignoring it on the left.

This small tweak changes the interpretation of narrowing while preserving its

ability to overapproximate rewriting. In conventional narrowing, [𝑣1 ↦→ 𝑣2] represents

an environment with a single, to-be-determined key/value pair. 𝑣1 may unify with

both the names “x” and “y”, but only in parallel universes. In abstract rewriting,

[𝑣1 ↦→ 𝑣2] represents arbitrary environments, where any name maps to any value.

Graph-Pattern Generation (Now with Match-Types) The final requirement

to generate graph patterns for a language 𝑙 is that the ordering for State𝑙 has a

maximum value ⊤𝑙. Then, graph patterns are generated as follows: For each node

type 𝑁 , generate the abstract transition graph by narrowing from the start state 𝑆 =
⟨
(𝑁(𝑥𝑖NonVal),⊤𝑙)

⃒⃒
𝑘
⟩
, where the 𝑥𝑖 are arbitrary non-value variables, and 𝑘 is fresh.

Any time a state of the form
⟨︀
(𝑒NonVal, 𝜇)

⃒⃒
𝐾
⟩︀

is encountered, instead of narrowing,

add a transitive edge to
⟨︀
(⋆Val,⊤𝑙)

⃒⃒
𝐾
⟩︀
. Halt at any state

⟨︀
(𝑣, 𝜇)

⃒⃒
𝑘
⟩︀
, where 𝑘 is the

same context variable as 𝑆, and 𝑣, 𝜇 are an arbitrary value and reduction state.

From this, we see that the graph pattern in Figure 4-3 was slightly simplified. The

real one has each starting variable annotated with NonVal and replaces each ⋆ node

with ⋆Val.

Code-Generation

The code generator traverses the graph pattern, identifying subterm enter and exit

states, and greedily merges unrecognized intermediate states with adjacent ones if one

dominates the other, essentially building a custom projection. The output projection

will have the property that each equivalence class of nodes forms a connected loop-free

subgraph of the entire graph pattern. In the end, for an AST-node with 𝑘 children,

there will be up to 2𝑘 + 2 graph nodes, an enter and exit CFG-node for the outer

215

AST node and each child. Once all abstract states have been merged into these graph

nodes, the algorithm identifies the edges between the nodes, and outputs code like in

Figure 4-3, with one connect statement per edge in the projected graph pattern.

The code generator guarantees that the generated code will generate a valid CFG

(i.e.: a valid projection of the abstract transition graph). However, there are cases

where a projection of the desired form does not exist, and hence the search termi-

nates with failure. This occurs in cases where a single step in the source program

corresponds to an arbitrary number of steps in the internal semantics (as in Java

method resolution, which must traverse the class table). This scenario does not occur

in Tiger and MITScript; it successfully generates code for both.

One subtle fact is that not every AST node will have a distinct exit node. For

example, in all three languages, the graph pattern for if 𝑒 then 𝑠1 else 𝑠2 will actu-

ally terminate in the exit nodes of 𝑠1 and 𝑠2, which both must be directly connected

to whatever statement follows the if. The generated CFG-generators hence actually

treat lists of enter/exit nodes as the atomic unit, rather than single nodes. Note

that, if the language designer did want to have a distinct “join” node terminating the

CFG for an if-statement, they could accomplish this by changing the semantics of

if-statements to introduce an extra step after the body is evaluated.

4.6.1 An Automated Termination-Prover

As the normal abstract state transition graph overapproximates all concrete execu-

tions of a program, a graph pattern for a language construct overapproximates the

relevant fragment of all abstract state transition graphs.

Is it possible to have finite graph patterns but infinite abstract transition graphs,

i.e.: for the compiled-mode CFG generator to terminate, but not the interpreted-mode

one? With some light assumptions, we can show this is not the case. Hence, while

the output of the compiled-mode CFG-generator will always be less precise than that

of an interpreted-mode generator, it turns out running the compiled-mode generator

once per language will prove that the interpreted-mode generator terminates on all

programs in that language.

216

name "assn−cong" $

mkRule5 (\x e e ' mu mu' −>
let (gx, ne, ge ') = (GVar x, NVar e , GVar e ')
in StepTo (conf (Assign gx ne) mu)

(LetStepTo (conf ge' mu ') (conf ne mu)
(Build $ conf (Assign gx ge ') mu ')))

Figure 4-14: Encoding of the AssnCong rule from Section 4.3.2

Table 4.1

Interpreted Compiled
E S P E S

IMP X X X X X
Tiger X N/A × X N/A

MITScript X X × X X

Theorem 4.6.1. Let 𝑎 ∈ amState𝑙 and 𝛼 be a machine abstraction. If the graph

patterns under abstraction 𝛼 for all nodes in 𝑎 are finite, then only finitely many

states are reachable from 𝑎 under the ̂︁→
𝛼

relation.

This proof requires a few more technical assumptions and a refinement to the

definition of ̂︁
𝛼

. The details are in Appendix B.3.

4.7 Deriving Control from a Mandate

We have implemented our approach in a tool called Mandate. Mandate takes

as input an operational semantics for a language as an embedded Haskell DSL, and

generates a control-flow graph generator for that language for every abstraction/pro-

jection supplied. It can then output a generated CFG to the graph-visualization

language DOT. Mandate totals approximately 9600 lines of Haskell: 4100 lines in

the core engine, and 5500 lines for our language definitions and example analyzers.

1350 of those lines define the 80 SOS rules for Tiger and 60 rules for MITScript,

using the DSL depicted in Figure 4-14. 550 of those lines are automatically-generated

CFG-generation code.

Table 4.1 lists the CFG-generators we have generated using Mandate. The

217

Table 4.2: Example analyzers

LOC IMP Tiger MIT
Constant-prop 115 X X X

Paren-balancing 49 X × ×

columns E, S, and P correspond to the expression-level, statement-level, and path-

sensitive CFGs from Section 4.1, and which are generated by the three abstractions

from Section 4.5.3. The expression- and statement-level CFG-generators come in

interpreted-mode and compiled-mode flavors. Tiger lacks a statement-level CFG-

generator, because everything in Tiger is an expression. Section 4.7.1 explains the

structure of heaps in Tiger and MITScript, and the implementation that would

be required for Mandate to support the boolean-tracking abstraction for them.

The high readability of the generated CFG-generators allows for easy inspection

and comparison to intuitive control-flow. But, to further test the usefulness of the

generated CFGs, we built two example analyzers, summarized in Table 4.2. The

first is a simple constant-propagation analysis on expression-level CFGs, supporting

assignments and integer arithmetic. The second is the parenthesis-balancing analyzer

described in Section 4.1, built atop the path-sensitive CFG. Even though Mandate

was built as a demonstration of theory rather than as a practical tool, the simplicity

of this exercise is further evidence that Mandate’s output does indeed correspond to

conventional hand-written CFG-generators, while their brevity reinforces our thesis

that having the appropriate kind of CFG-generator greatly simplifies tool

construction.

In the remainder of this section, we demonstrate the power of Mandate by showing

how it generates concise, readable code even in the face of complicated language

constructs.

4.7.1 Control-Flow Graphs for Tiger and MITScript

Previous sections used IMP as the running language, which, in our implementa-

tion, has only 20 SOS rules, with low complexity. In this section, we explain how

218

(ConsFrame (HeapAddr 0) NilFrame ,
JustSimpMap $ SimpEnvMap $ Map . fromList
[(HeapAddr 0 ,

ReducedRec

$ RedRecCons (RedRecPair (Name " p r i n t ")
(RefVal $ HeapAddr 1))

$ RedRecCons (RedRecPair (Name " read ")
(RefVal $ HeapAddr 2))

$ RedRecCons (RedRecPair (Name " i n t c a s t ")
(RefVal $ HeapAddr 3))

$ Parent $ HeapAddr $ −1)
, (HeapAddr 1 , builtinPrint)
, (HeapAddr 2 , builtinRead)
, (HeapAddr 3 , builtinIntCast)
])

Figure 4-15: Starting state of MITScript programs

our techniques work when applied to two larger languages, Tiger and MITScript,

which have 80 and 60 rules, respectively. It turns out that these do not introduce

fundamental new challenges, although they do impose more stress on Mandate’s

term-rewriting engine.

Reduction State The main difference between IMP and the larger languages is in

the structure of their heap. In IMP, the reduction state was a simple map of variable

names to values. In Tiger and MITScript, the reduction state must allow for stack

frames, pointers, and closures. This reduction state is merely a particularly-shaped

pair of environment and term, and involves no extension to the mechanics

already used in IMP. Both Tiger and MITScript use the same design for their

reduction state, designed as follows:

219

State ::= (Stack,Heap)

HeapAddr ::= Int

Stack ::= ConsFrame(HeapAddr, Stack) | NilFrame

Heap ::= HeapAddr ⇀ Record

Record ::= (Symbol ⇀ Value,HeapAddr?)

The state consists of a stack and a heap. The stack is a list of heap addresses. The

heap is a map of heap addresses to records, where each record contains a map of

symbols to values. These records are used to store not only stack frames but also

arrays and objects in the language. Each record optionally also contains a pointer to

a parent record: looking up a symbol in a record will traverse the parent record if not

found.

For an example heap, Figure 4-15 gives the starting heap of all MITScript

programs, which contains hardcoded mappings of several strings to builtin functions.

These functions are ordinary MITScript values defined elsewhere, whose bodies

contain the special Builtin node, whose evaluation invokes an appropriate semantic

function.

A limitation of the current Mandate implementation is that it does not support

associative-commutative matching for nested maps. Hence, each heap record is im-

plemented as an assoc-list rather than a map, with record lookup implemented as

a semantic function. This is the reason why the boolean-tracking abstraction is not

implemented for Tiger or MITScript.

Examples Our first example is MITScript if-statements, which illustrate how

Mandate can generate multiple CFG-generators from the same semantics. When

run in compiled-mode with the value-irrelevance abstraction, Mandate generates

the code in Figure 4-16a for if-statements:

Note how the generator returns multiple exit-nodes for the if-statement. This

means that the graph-generator will draw edges from both nodes to whatever comes

220

genCfg t@(Node " If " [a , b , c]) =
do (tIn, tOut) <− makeInOut t

(aIn, aOut) <− genCfg a

(bIn, bOut) <− genCfg b

(cIn, cOut) <− genCfg c

connect tIn aIn

connect aOut cIn

connect aOut bIn

return (inNodes [tIn],
outNodes [bOut,cOut])

(a)

genCfg t@(Node " If " [_ , a , b]) =
do (tIn, tOut) <− makeInOut t

(bIn, bOut) <− genCfg b

(aIn, aOut) <− genCfg a

connect tIn bIn

connect tIn aIn

return (inNodes [tIn],
outNodes [bOut,aOut])

(b)

Figure 4-16

genCfg t@(Node "ForExp" [a, b , c , d]) =
do (tIn, tOut) <− makeInOut t

(bIn, bOut) <− genCfg b

(cIn, cOut) <− genCfg c

(dIn, dOut) <− genCfg d

(aIn, aOut) <− genCfg a

connect tIn bIn; connect dOut tOut

connect dOut dIn; connect dOut tOut

connect cOut dOut; connect bOut cIn

return (inNodes [tIn], outNodes [tOut])

Figure 4-17: Genenerated Tiger for-loop CFG generator

after the if-statement. When run with the expression-irrelevance abstraction Man-

date produces code generating smaller graphs which do not have nodes to represent

the evaluation of the condition, code shown in Figure 4-16b.

We next show our most impressive example, showcasing Mandate’s ability to

cut through syntactic sugar to determine the control-flow behavior of a node type:

Tiger for-loops. Tiger for-loops have more parts than for-loops in most languages.

A for-loop in Tiger looks like this.

f o r a = b to c do

d

The semantics are given by a single rule which desugars the above to:

221

l e t a := b

__hi := c

i n

wh i l e (a <= __hi) do

(d ; a := a + 1)

Mandate generates a graph pattern containing 46 nodes. Mandate’s code-

generator projects these into just 8 states, for the enter and exit nodes of 𝑏, 𝑐, 𝑑, and

the entire loop, yielding the code in Figure 4-17.

Mandate has blown that giant graph down into just 5 edges. While Mandate

does not sort the connect statements, and does output one edge twice, it is still easy

to see what the code is doing: it states that control first evaluates 𝑏, then 𝑐. The

connect cOut dOut line is the most interesting one: it says that, after evaluating 𝑐

(the upper boundary of the loop), control flows to the thing that happens after 𝑑 is

evaluated, namely the condition of the while loop, from which control flows either to

the body of 𝑑 or to the end of the entire loop.

It is impressive that Mandate can generate short code for this construct with no

reference to these internal computations, particularly considering that while is defined

by expansion into if. This code is generated completely automatically from

the Tiger semantics and the (function-skipping variant of the) value-irrelevance ab-

straction. The user need not even provide a projection; one is generated automatically

by the code generator, by greedily merging nodes as described in Section 4.6.

Notes on Designing the Semantics Consider the following rule for evaluating

the l-value of a field assignment:

(𝑎.𝑛 := 𝑒, 𝜇) ; let [(𝑎, 𝜇) ; (𝑎′, 𝜇′)] in ((𝑎′).𝑛 := 𝑒, 𝜇′)

Upon running Mandate in compiled-mode, rules like this produce graph-patterns

which are too coarse. That’s because Mandate generates graph patterns for all

assignments 𝑥 := 𝑒, which could match this rule as well as the rules for assignments

of variables or array indices. While we could modify Mandate to produce separate

222

graph patterns for 𝑎.𝑛 := 𝑒 vs. 𝑎[𝑖] := 𝑒 or 𝑥 := 𝑒, we opted instead to change the

semantics. We instead modified the rule to this:

(𝑙 := 𝑒, 𝜇) ; let [(𝑙, 𝜇) ; 𝑙′, 𝜇′)] in (𝑙′ := 𝑒, 𝜇′)

We then ensured there were separate node types for l-values vs. expressions of the

form 𝑎.𝑛, and defined rules to evaluate each kind of l-value.

The overall lesson is that Mandate’s compiled mode works best when rules match

only on the topmost node. We have not yet needed to make Mandate more sophisti-

cated to overcome this problem because it is easier to modify the language semantics.

4.8 Conclusion

This work presented both an algorithm for constructing CFGs from first principles

and the world’s first CFG-generator generator. Yet our work also furthers three larger

goals.

First, we have provided an answer to “what is a control-flow graph?” beyond the

vague “a CFG is an abstraction of control-flow:” A CFG is a projection of the transi-

tion graph of abstracted abstract machine states. This fulfills our original impetus for

this work, that of needing to create static analyzers with exotic notions of “program

point.”

Second, we have introduced abstract rewriting as a simple yet powerful technique

for deriving tools from a language’s semantics. We are excited by the idea of using it

to derive other artifacts from language semantics, such as a symbol-table generator

from the typing abstract-machine [152].

Third, we have used a language’s semantics to derive a tool entirely unlike a

semantics. Though it’s long been known that a semantics can be executed to obtain an

interpreter or even a symbolic-executor [148], we see our contribution as qualitatively

different, and an important step towards the dream of being able to write down a

language’s syntax and semantics and automatically derive all desired tools.

223

224

Chapter 5

Related Work

5.1 Modular Language Tooling

Cubix is most directly based on the data types à la carte approach to modular syntax

[160], and its extensions in work on compositional data types by [9]. The extension

to multi-sorted terms was introduced in [185]. Other approaches to modular syntax

include tagless-final [89], object algebras [186], and modular reifiable matching [38].

All these works share the same limitation: supporting a language requires building it

from scratch in terms of special components. We overcame this limitation by using

sort-injections to intermix a generic representation with one from existing frontends.

This work on modular syntax is joined by work on modular semantics, such as

modular monadic semantics [108] and its cousin modular monadic meta-theory [47],

as well as modular SOS [120] and its successor work on funcons [28]. These are used

to build and verify interpreters for multiple languages, and will likely be necessary to

extend our work to verifying multi-language transformations.

2003 saw a Dutch grant on language-parametric refactoring [167], building on a

prototype by Lämmel [98, 76]. Their approach was to parameterize a transformation

on (1) a fixed number of (language-specific) sorts used by the transformation, and

(2) a set of primitive transformation operations, given as functions over these sorts.

In this approach, the ASTs are opaque to the generic code, and hence essentially all

computation happens in the language-specific functions. Conversely, in our approach,

225

the generic code can manipulate the generic portions of a tree directly, which allows

large chunks of a language-parametric transformation to be written similarly to a

normal single-language rewrite.

But then in 2019, after the publication of Cubix, GitHub announced their semantic

project [66], which bore an uncanny resemblance to Cubix: a multi-language program

analysis toolkit based on (single sorted) data types à la carte, featuring a strategy

combinator library with an interface similar to compstrat. Unlike Cubix, however, it

lossily replaced all nodes in language ASTs with generic nodes, and was thus unsuit-

able for source-to-source transformation, being intended instead to provide symbol

table creation to power GitHub’s “jump to definition" feature. We spoke to several

employees on the semantic team to compare notes. Despite the initial convergent

evolution, because semantic’s goals differed substantially from those of Cubix, it

soon diverged, soon replacing the DLC approach with a set of incompatible ASTs

but with some common interface, reminiscent of Lämmel et al’s language-parametric

refactoring approach.

Sort injections are an instance of the concept of feature interactions from the field

of software product lines [168]. A similar idea is seen in the TruffleVM [70] to allow

language runtimes to exchange messages.

The past decade has seen extensive work in language workbenches, which are

designed to make it easy to implement languages and transformations on them. They

include Spoofax and its component Stratego [87], Rascal [91], TXL [36], Semantic

Designs DMS [12], and JetBrains MPS [174]. These were extensively surveyed in

Erdweg et al [53]. All these share the limitation that, while they make it easy to

define languages and write transformations, the resulting transformations can only

run on one representation of one language. At best they can be used to implement

the “Clang-style” common representation, discussed in Section 2.1.1.

One recent work that echoes our work on Cubix is Brown et al’s [23] work using

island grammars [119] to write static analyzers for multiple languages. They show

that they only need to represent fragments of a language to construct an analyzer.

Their analyzers are still built for a single language, and they resort to cloning code

226

to implement them for others. They do not address transformation.

Incremental concrete syntax [51] is a technique using island grammars to construct

parsers. It focuses on concrete syntax (parsing), whereas ours focuses on abstract

syntax (representation).

In spite of the promise of statistical approaches for producing language-agnostic

tools, few multi-language tools have been created by such methods in domains where

correct code output is required. For example, though several groups have exper-

imented with neural program repair, ENCORE [112] bills itself as the first auto-

mated program-repair tool to address multiple languages, achieving a 33% fix rate on

QuixBugs, our own multi-language program repair benchmark [1].

5.2 Control-Flow

CFG Generation There have been a few works on techniques for constructing

control-flow graphs. FlowSpec [157], a component of the Spoofax language work-

bench [87], contains a DSL for specifying control-flow graphs in terms of single-

pushout graph rewrite rules [111] reminiscent of the GrGen graph-rewriting language

[63]. Though it yields compact definitions, it has no support for generic programming.

Semantic Designs DMS [12] has a DSL based on attribute grammars for constructing

CFGs. The results are quite verbose; their Java CFG-generator is over 5000 lines.

CFG-based Transformation Despite extensive work on advanced techniques in

program transformation [172], there has been a paucity on work which uses a graph

to aid in transformation. We only know of two works in this category. The more

well-known one is Coccinelle [130]. The capabilities of Coccinelle can be succinctly

described as: simultaneous associative matching/rewriting of multiple tree patterns,

connected by arbitrary control-flow paths. In a personal conversation, one of the

Coccinelle creators summarized “We use the CFG in matching, but not in rewriting."

Though it provides an ellipsis (“...") primitive which matches arbitrary sets of control-

flow paths, each end of a path is ordinary tree rewriting. Coccinelle would still need

227

many cases to handle the examples of Section 2.7.1, though “..." may help with continue

statements. More relevant and more obscure is a technique of Griswold [72] used in

the world’s first refactoring tool. Though based on program-dependence graphs [55]

rather than CFGs, it shares the characteristic of more closely tying the graph and

rewriting, by providing simultaneous updates on the AST and PDG.

Control-Flow Analysis Many papers have been written on control-flow analysis

[116, 156, 85, 80]. Older research tries to manually construct a complicated analysis of

programs with highly-dynamic control flow. Our work on Mandate automatically

constructs CFG-generators from first principles. Our goal in Mandate is not to

analyze complex programs, but to match the work of hand-written CFG-generators

with minimal user input.

As such, we do not consider Mandate to be part of the literature on control-

flow analysis. Owing to their different emphasis, these works uniformly have three

limitations that make them unsuitable for automatically deriving CFG-generators:

1. While they explain how a human could define a new analysis for different lan-

guages, their analyses are ultimately manually defined for each language. They

further repeat this manual construction for every abstraction used.

2. They check that their result safely approximates executions, but pay no atten-

tion to the shape of the graph.

3. Most importantly, they manually partition program states into equivalence

classes. That is, they manually annotate the program with labels or program-

points, using these as CFG nodes. This is a hindrance to both automation

and theory, as most type theories do not contain labels. This was particularly

important for Mandate, which was originally motivated by a planned project

on combining analyses with different notions of program point (i.e.: which par-

tition program states differently), which makes not hardcoding them especially

important.

228

We now present a brief overview of research on control-flow analysis. CFA research

typically focuses on functional languages, with an emphasis on overapproximating the

potential targets of anonymous function calls. Perhaps the most famous such work is

the k-CFA analysis of Shivers [156]. This and many other works frame their analysis

as an abstract interpretation of executions, though there are too many approaches to

describe here; Midtgaard [116] gives an extensive survey.

There are two works from this field which deserve special mention for relevance

to Mandate. The first is Jones [85], which is the first to define control-flow as an

abstract interpretation of executions. Through a modern lens, it is also the first

to do so by abstracting abstract machines: it presents an abstraction of a custom

abstract machine resembling a CC machine [54]. It shares the limitations mentioned

above, although its representation of program points is subtle: it uses a set of tokens

representing the different function applications of the source program.

The second is Jagannathan and Weeks [80], due to its focus on generality, explicit

construction of graphs, and attempt to relate their construction to an operational

semantics. It is also the most extreme in its use of manual program-point annotations,

going as far as to design an abstract machine with an explicit program counter.

5.3 Tools from Semantics

Work with Related Goals Our work on Mandate joins a small-but-growing

body of work on mechanizing the generation of programming tools. Others include

generating static analyzers via multiple executions of interpreters or semantics [44,

153, 43, 17], using an executable language semantics as a tool (by the K Framework

[148]), and our own work in the language-parametric construction of programming

tools. Our work is similar to tools built with the K Framework in that both start

with a semantics; ours differs by transforming the semantics into an applied tool,

whereas K is limited to applications directly based on equational reasoning, namely

interpreters and symbolic executors. Bodin et al [17] briefly mention having a 0-

CFA for the lambda calculus generated from their “skeletal semantics;" in personal

229

communication, they described it as “working code, but not a principled approach"

and “We don’t do a CFG-generator."

Transformation of Semantics There are a few projects that transform semantics

for one language into semantics for a related language. Examples include transforming

rules to support gradual types [29, 30], and deriving new rules for types and scoping

of syntactic sugar [136, 137].

More closely related are projects that transform semantics presented in one for-

malism into identical semantics in a different formalism, mostly done by Danvy and

his students [39, 42, 184, 4, 41, 40, 15], with a few by others. Hannan and Miller [74] is

perhaps the most known older work. But it is very limited: They give a few examples

of manually deriving an abstract machine from big-step semantics, using a sequence

of up to 6 hand-proven transformations. Ager [3] continues this work, providing a

simpler and automated approach, though with some additional limitations, such as

needing nondeterminism to execute if-statements. Other works in this area include

Poulsen and Mosses [139], Huizing et al [78], and Vesely and Fisher [171].

When we first began work on Mandate, we planned to simply look up an al-

gorithm to convert SOS to abstract machines, but surprisingly found none existed.

Almost all work in this space is by Danvy and associates, and, while their papers focus

on individual formalisms, Danvy personally told us that he is not interested in small-

step semantics because it would not require new techniques over his prior work, and

that he is similarly uninterested in creating a general algorithm, when he’s already

sketched how to do the transformation for a single example [39]. So, although Danvy

may personally know how to do the transformation, there is no prior published

algorithm for converting SOS to abstract machines.

Our next plan was to convert the SOS to reduction semantics and then apply

Danvy’s algorithm for converting reduction semantics to an abstract machine [42].

However, we found the assumptions of this algorithm too limiting, as it prohibits

any use of external semantic functions or state. Rather than extend this algorithm,

we found it much easier to use PAM as an intermediate step, because its nature

230

as a modified term-rewriting system gives us access to unification-based techniques

for analyzing and transforming it. For instance, while proving up-rules invertible

is a reachability search taking 20 lines of code, proving the equivalent property for

reduction semantics, unique decomposition, took a 20-page paper [184].

To our knowledge, the Tiger and MITScript languages in this thesis are by

far the largest languages to undergo automated conversion between two forms of

semantics; prior work focuses on simple lambda calculi. And Danvy told us the

largest example of a mechanized (hand-guided) transformation from his group is a

toy model of Prolog [16]; ours are far larger.

Abstracting Abstract Machines (AAM) The first known work explicitly on

abstract interpretation of abstract machines was by Midtgaard and Jensen [118, 117],

though a modern reader may also consider Jones [85] to be an earlier example. This

was followed by the “abstracting abstract machines” (AAM) line of work began by

Van Horn and Might [169, 179, 67, 68].

These take a substantially different flavor from our own, due to their focus on

higher-order analyses of functional languages. A key technical difference is the choice

of abstraction operator: they use variants of store-bounding, whereas we use syntactic

abstractions designed to make the abstract state space resemble a conventional CFG.

The use of these syntactic abstractions allows our algorithm to automatically abstract

the transition rules of an abstract machine via abstract rewriting. Their paper’s

approach only automatically abstracts reads and writes to an abstract store; the

abstract transition steps are still manually defined. For example, the algorithm in

this thesis can take in a rule like
⟨︀
true

⃒⃒
𝑘 ∘ [(if �𝑡 then 𝑠1 else 𝑠2,�𝑘)]

⟩︀
→

⟨︀
𝑠1

⃒⃒
𝑘
⟩︀

and the corresponding rule for false, and deduce that if-statements may step into

either branch because both rules match a single ⋆ state. The approach in their paper

can at best nondeterministically evaluate an expression to separate {true, false}
states and then match both if-rules, which produces an un-CFG-like graph where the

branching happens prior to the if-statement.

231

Abstract Rewriting and Syntactic Abstraction Abstract rewriting was intro-

duced by Bert and Echahed in the early 90’s [14, 13] and has received little attention

since. We can thus only compare to their work. While the details differ substantially

owing to their different focus (approximating the possible normal forms of a term),

it has some common elements with our development: they split nodes into “construc-

tors” and “completely-defined operators,” resembling our value/nonvalue split, and

use a ⊤ node with similar semantics to our ⋆. A major point of departure in their

development is that, in their system, each abstract step must overapproximate all con-

crete transitions from an abstract term. A newer related technique from a different

lineage is rewriting modulo SMT [147], which operates on (numeric) symbolic terms

constrained by an SMT formula (e.g.: linear arithmetic). We are interested in future

work combining these techniques to automatically derive more-precise analyses.

Outside of Bert & Echahed, there are a few works which share minor details

or terminology with our development of abstract rewriting. In the broadest sense,

abstract unification means taking some algorithm that uses unification, and replacing

the unification with some other operation. Prior work in this sense comes from work

on the abstract interpretation of logic programs [88, 37]. These algorithms commonly

replace unification with a simple operation such as tracking sharing and linearity, for

the purpose of, e.g.: eliminating backtracking or the occurs-check (see §10 of [37] for

a literature review).

In contrast, the abstract matching procedure in our work (and in Bert & Echahed)

is an extension of normal matching to a set of abstract terms, consisting of normal

terms augmented with a set of “blown-down” terms. This technique appears absent

from the literature on static analysis of logic programs, for it is not useful for tradi-

tional static analysis by abstract interpretation, as the domain of abstract terms is

infinite (meaning: our algorithm cannot compute a single control-flow graph which

usefully describes all possible programs).

Apart from Bert & Echahed, we have found a couple papers that use syntac-

tic abstraction, albeit in a different form. An early use is the “star abstraction” of

Codish et al [32, 33], which merges identical subterms of a tree, and is unrelated to

232

the similarly-named abstraction in this thesis. Schmidt [150] uses this to merge iden-

tical processes in a CCS-like system, bounding executions to aid in model-checking.

Although it is not discussed in the paper, Glaze [68] does some syntactic abstraction

in the implementation, representing all numbers as identical number nodes.

The term “abstract matching” also has an unrelated meaning in the model-checking

community, where it refers to finding equivalences between abstract states [133].

The ARM abstract rewriting machine [86] provides a compact instruction set for

executing term-rewriting systems efficiently. It handles ordinary rewriting, rather

than abstract rewriting in our sense.

233

234

Chapter 6

Conclusion

Programmers create immaterial wealth for the world in the form of useful soft-

ware, and so programmer productivity is the first derivative of software wealth.

Work on building tools contributes to the second derivative of wealth, and meta-

metaprogramming to the third derivative. Yet because tools are themselves soft-

ware, tool development promises to create a positive feedback loop giving exponential

growth in the rate of software wealth creation so long as problems remain amenable

to tooling, and so advances in meta-metaprogramming will hasten this exponential.

In Chapter 1, we described two major technical barriers making tools laborious

to build, the linguistic complexity problem and the heterogeneity problem, the latter

being subdivided into the problems of closedness, type invariance, and bidirectionality.

This thesis has dealt several blows against these problems barriers. What stands

between now and victory? What more must be done to achieve the programming

utopia tantalized by the union of tools papers, where a magic button to assist with

virtually any programming task in any language of interest is but a credit-card swipe

away?

With Mandate, we have performed an automated conversion of semantics on

by far the largest language, and ultimately automatically derived a tool from its

semantics. Yet the semantics formalism it acts on, though expressive, is still far too

limited to scale to a full semantics of C or Java (c.f.: [75, 20]), and a CFG-generator

is still a tiny piece of a practical tool. ECTAs unlock a new category of problems that

235

can be given to a general solver, but their success still requires future generations

of researchers to use it for ever-more applications, just as SMT and e-graphs took

many years to begin reaching their full potential. Cubix and Yogo are closest

to commercial impact. With Cubix we have built the world’s first multi-language

program transformations, including ones developed simultaneously for 5 languages,

while we used Yogo to find a performance bug in a 1.2 million line codebase that

had been missed by a handwritten analyzer designed for that kind of bugs. Yet

Yogo still gives its output in difficult-to-read text dumps, and Cubix only supports

5 languages and has a number of engineering limitations. For instance, Cubix still

cannot effectively handle multiple dialects of a language such as GCC vs. Microsoft

C or Java 7 vs. Java 8 — not for any good reason, but simply because generalizing

certain constraints hits idiosyncratic performance bugs in the Haskell compiler.

In short, we have knocked a large hole through the barrier of type invariance, and

made large dents in the problems of closedness and linguistic complexity, and a small

one in bidirectionality. Yet the barriers all still stand.

This thesis has also not touched at all on the usability and discoverability of tools.

The usability problem is almost self-explanatory: the larger a task a tool assists or

automates, the more input or interaction it needs with the user to ensure it is carrying

out their will. As for discoverability: given the sheer variety of distinct programming

problems tools address, many of which went unnamed prior to a tool being built,

there will be a huge problem of connecting programmers to the right tool for a given

moment. We can envision browsing source code with some advanced representation

where an appropriate tool can be suggested in a context menu, or perhaps even an AI

that watches a programmer type or reads programming communications and guesses

their larger task. These are problems that must be addressed by future researchers,

using techniques foreign to this thesis such as software visualization, HCI, and NLP.

Yet the many works discussed in Chapter 5 show that we are not alone. In the

not-so-distant future, achieving breakthroughs in the ease of tool construction will

come not from novel techniques, but from the immense knowledge and design needed

to integrate much of this literature into an integrated system or framework.

236

Fixing the Y2K bug cost a large fraction of the world’s output. Its scarier succes-

sor, the 2038 problem, is coming near. Yet the increasing sophistication of software

tools, and our increasing ability to build them as furthered by this thesis, gives hope

that rectifying Y2038 will not be such a world stopping effort, and similar for the

many smaller problems that stymie software creation and change worldwide, such as

the Facebook and Dropbox problem of Chapter 2 that dominated both companies for

a time. With greater ease of scaling, the research prototypes of today can become

the practical tools of tomorrow. Software victory shall be attained.

237

238

Bibliography

[1] QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the
Quixey Challenge, author=Lin, Derrick and Koppel, James and Chen, An-
gela and Solar-Lezama, Armando. In Proceedings Companion of the 2017 ACM
SIGPLAN International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity, pages 55–56. ACM, 2017.

[2] Michael D Adams and Matthew Might. Restricting Grammars with Tree Au-
tomata. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–
25, 2017.

[3] Mads Sig Ager. From Natural Semantics to Abstract Machines. In International
Symposium on Logic-Based Program Synthesis and Transformation, pages 245–
261. Springer, 2004.

[4] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Evaluators and Abstract Machines. In Pro-
ceedings of the 5th ACM SIGPLAN international conference on Principles and
Practice of Declarative Programming, pages 8–19. ACM, 2003.

[5] Ferran Alet, Javier Lopez-Contreras, James Koppel, Maxwell Nye, Armando
Solar-Lezama, Tomas Lozano-Perez, Leslie Kaelbling, and Joshua Tenenbaum.
A Large-Scale Benchmark for Few-Shot Program Induction and Synthesis. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learn-
ing Research, pages 175–186. PMLR, 18–24 Jul 2021.

[6] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[7] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
university press, 1999.

[8] Leo Bachmair and Nachum Dershowitz. Equational Inference, Canonical Proofs,
and Proof Orderings. Journal of the ACM (JACM), 41(2):236–276, 1994.

[9] Patrick Bahr and Tom Hvitved. Compositional Data Types. In Proceedings of
the Seventh ACM SIGPLAN Workshop on Generic Programming, WGP@ICFP
2011, Tokyo, Japan, September 19-21, 2011, pages 83–94, 2011.

239

[10] Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille
Vacher. The Emptiness Problem for Tree Automata with Global Constraints.
In 2010 25th Annual IEEE Symposium on Logic in Computer Science, pages
263–272. IEEE, 2010.

[11] Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille
Vacher. Decidable Classes of Tree Automata Mixing Local and Global Con-
straints Modulo Flat Theories. Logical Methods in Computer Science, 9, 02
2013.

[12] Ira D Baxter, Christopher Pidgeon, and Michael Mehlich. DMS®: Program
Transformations for Practical Scalable Software Evolution. In Proceedings of the
26th International Conference on Software Engineering, pages 625–634. IEEE
Computer Society, 2004.

[13] Didier Bert and Rachid Echahed. Abstraction of Conditional Term Rewriting
Systems. In Logic Programming, Proceedings of the 1995 International Sympo-
sium, Portland, Oregon, USA, December 4-7, 1995, pages 162–176, 1995.

[14] Didier Bert, Rachid Echahed, and Bjarte M Østvold. Abstract Rewriting. In
International Workshop on Static Analysis, pages 178–192. Springer, 1993.

[15] Małgorzata Biernacka. A Derivational Approach to the Operational Seman-
tics of Functional Languages. PhD thesis, BRICS PhD School, Department of
Computer Science, Aarhus University, Aarhus, Denmark, 2006.

[16] Dariusz Biernacki and Olivier Danvy. From Interpreter to Logic Engine by
Defunctionalization. In Logic Based Program Synthesis and Transformation,
13th International Symposium LOPSTR 2003, Uppsala, Sweden, August 25-27,
2003, Revised Selected Papers, pages 143–159, 2003.

[17] Martin Bodin, Philippa Gardner, Thomas Jensen, and Alan Schmitt. Skeletal
Semantics and Their Interpretations. PACMPL, 3(POPL):44:1–44:31, 2019.

[18] Bruno Bogaert, Franck Seynhaeve, and Sophie Tison. The Recognizability Prob-
lem for Tree Automata with Comparisons Between Brothers. In International
Conference on Foundations of Software Science and Computation Structure,
pages 150–164. Springer, 1999.

[19] Bruno Bogaert and Sophie Tison. Equality and Disequality Constraints on Di-
rect Subterms in Tree Automata. In Annual Symposium on Theoretical Aspects
of Computer Science, pages 159–171. Springer, 1992.

[20] Denis Bogdanas and Grigore Roşu. K-Java: A Complete Semantics of Java.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015, pages 445–456, 2015.

240

[21] Niklas Broberg. language-java: Manipulating Java Source. http://hackage.

haskell.org/package/language-java-0.2.8, November 2015.

[22] Frederick P Brooks Jr. The Mythical Man-Month: Essays on Software Engi-
neering. Pearson Education, 1995.

[23] Fraser Brown, Andres Nötzli, and Dawson Engler. How to Build Static Checking
Systems Using Orders of Magnitude Less Code. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 143–157. ACM, 2016.

[24] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
BAP: A Binary Analysis Platform. In CAV, 2011.

[25] Yuandao Cai, Peisen Yao, and Charles Zhang. Canary: Practical Static De-
tection of Inter-Thread Value-Flow Bugs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Im-
plementation, pages 1126–1140, 2021.

[26] Michael Carbin and Armando Solar-Lezama. MITScript Language Specifi-
cation. http://6.s081.scripts.mit.edu/sp18/handout-pdfs/specification.pdf,
2018.

[27] Adam Chlipala. Parametric Higher-Order Abstract Syntax for Mechanized Se-
mantics. In Proceedings of the 13th ACM SIGPLAN international conference
on Functional programming, pages 143–156, 2008.

[28] Martin Churchill, Peter D Mosses, Neil Sculthorpe, and Paolo Torrini. Reusable
Components of Semantic Specifications. In Transactions on Aspect-Oriented
Software Development XII, pages 132–179. Springer, 2015.

[29] Matteo Cimini and Jeremy G. Siek. The Gradualizer: A Methodology and
Algorithm for Generating Gradual Type Systems. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
443–455, 2016.

[30] Matteo Cimini and Jeremy G. Siek. Automatically Generating the Dynamic
Semantics of Gradually Typed Languages. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, pages 789–803, 2017.

[31] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı-
Oliet, José Meseguer, and José F Quesada. Maude: Specification and Pro-
gramming in Rewriting Logic. Theoretical Computer Science, 285(2):187–243,
2002.

241

http://hackage.haskell.org/package/language-java-0.2.8
http://hackage.haskell.org/package/language-java-0.2.8
http://6.s081.scripts.mit.edu/sp18/handout-pdfs/specification.pdf

[32] Michael Codish, Saumya K. Debray, and Roberto Giacobazzi. Compositional
Analysis of Modular Logic Programs. In Conference Record of the Twentieth
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, January 1993, pages 451–464,
1993.

[33] Michael Codish, Moreno Falaschi, and Kim Marriott. Suspension Analysis for
Concurrent Logic Programs. In Logic Programming, Proceedings of the Eigth In-
ternational Conference, Paris, France, June 24-28, 1991, pages 331–345, 1991.

[34] Aurelien Coet. Staticfg. https://github.com/coetaur0/staticfg/tree/

9948ab8574c254f69564da46c0ca30e5ac0c35a5, 2020.

[35] Hubert Comon. Tree Automata Techniques and Applications. http://www.
grappa. univ-lille3. fr/tata, 1997.

[36] James R Cordy. The TXL Source Transformation Language. Science of Com-
puter Programming, 61(3):190–210, 2006.

[37] Patrick Cousot and Radhia Cousot. Abstract Interpretation and Application
to Logic Programs. The Journal of Logic Programming, 13(2-3):103–179, 1992.

[38] Bruno C. d. S. Oliveira, Shin-Cheng Mu, and Shu-Hung You. Modular Reifiable
Matching: A List-of-Functors Approach to Two-level Types. In Proceedings of
the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015, pages 82–93, 2015.

[39] Olivier Danvy. Defunctionalized Interpreters for Programming Languages. In
Proceeding of the 13th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008,
pages 131–142, 2008.

[40] Olivier Danvy and Jacob Johannsen. Inter-Deriving Semantic Artifacts for
Object-Oriented Programming. Journal of Computer and System Sciences,
76(5):302–323, 2010.

[41] Olivier Danvy, Kevin Millikin, Johan Munk, and Ian Zerny. On Inter-Deriving
Small-Step and Big-Step Semantics: A Case Study for Storeless Call-by-Need
Evaluation. Theoretical Computer Science, 435:21–42, 2012.

[42] Olivier Danvy and Lasse R Nielsen. Refocusing in Reduction Semantics. BRICS
Report Series, 11(26), 2004.

[43] David Darais, Nicholas Labich, Phúc C Nguyen, and David Van Horn. Ab-
stracting Definitional Interpreters (Functional Pearl). Proceedings of the ACM
on Programming Languages, 1(ICFP):12, 2017.

242

https://github.com/coetaur0/staticfg/tree/9948ab8574c254f69564da46c0ca30e5ac0c35a5
https://github.com/coetaur0/staticfg/tree/9948ab8574c254f69564da46c0ca30e5ac0c35a5

[44] David Darais, Matthew Might, and David Van Horn. Galois Transformers and
Modular Abstract Interpreters: Reusable Metatheory for Program Analysis. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 552–
571, 2015.

[45] Max Dauchet. Rewriting and Tree Automata. In French School on Theoretical
Computer Science, pages 95–113. Springer, 1993.

[46] Max Dauchet, Anne-Cécile Caron, and Jean-Luc Coquidé. Automata for re-
duction properties solving. Journal of Symbolic Computation, 20(2):215–233,
1995.

[47] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.
d. S. Oliveira. Modular Monadic Meta-Theory. In ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013, pages 319–330, 2013.

[48] Nachum Dershowitz. Termination of Rewriting. Journal of Symbolic Computa-
tion, 3(1-2):69–115, 1987.

[49] David Detlefs, Greg Nelson, and James B Saxe. Simplify: A Theorem Prover
for Program Checking. Journal of the ACM, 52(3):365–743, 2005.

[50] Isil Dillig, Thomas Dillig, and Alex Aiken. SAIL: Static Analysis Intermedi-
ate Language with a Two-level Representation. Stanford University Technical
Report, 2009.

[51] Tom Dinkelaker, Michael Eichberg, and Mira Mezini. Incremental Concrete
Syntax for Embedded Languages with Support for Separate Compilation. Sci-
ence of Computer Programming, 78(6):615–632, 2013.

[52] Michael Dory, Allison Parrish, and Brendan Berg. Introduction to Tornado:
Modern Web Applications with Python. O’Reilly Media, Inc., 2012.

[53] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly,
Alex Loh, et al. The State of the Art in Language Workbenches. In International
Conference on Software Language Engineering, pages 197–217. Springer, 2013.

[54] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics En-
gineering with PLT Redex. Mit Press, 2009.

[55] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The Program Depen-
dence Graph and its Use in Optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 9(3):319–349, 1987.

243

[56] John Feser, Sam Madden, Nan Tang, and Armando Solar-Lezama. Deductive
Optimization of Relational Data Storage. Proc. ACM Program. Lang., 4(OOP-
SLA), November 2020.

[57] Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachabil-
ity Analysis over Term Rewriting Systems. Journal of Automated Reasoning,
33(3):341–383, 2004.

[58] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
Essence of Compiling with Continuations. In Proceedings of the ACM SIG-
PLAN’93 Conference on Programming Language Design and Implementation
(PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, pages 237–247,
1993.

[59] Charles L Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19:17–37, 1982.

[60] J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C Pierce,
and Alan Schmitt. Combinators for Bidirectional Tree Transformations: A Lin-
guistic Approach to the View-Update Problem. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 29(3):17–es, 2007.

[61] Python Software Foundation. CPython Test Suite. Version 3.7.0a0. https:

//docs.python.org/devguide/runtests.html, October 2016.

[62] FSF. C Language Testsuites: “C-torture”. Revision 240758. http://gcc.gnu.

org/onlinedocs/gccint/C-Tests.html, October 2016.

[63] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam
Szalkowski. GrGen: A Fast SPO-Based Graph Rewriting Tool. In International
Conference on Graph Transformation, pages 383–397. Springer, 2006.

[64] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema. On
Tree Automata that Certify Termination of Left-Linear Term Rewriting Sys-
tems. Information and Computation, 205(4):512–534, 2007.

[65] Andy Gill. A Haskell Hosted DSL for Writing Transformation Systems. In
Domain-Specific Languages, pages 285–309. Springer, 2009.

[66] GitHub, Inc. semantic. https://github.com/github/semantic, 2019.

[67] Dionna Amalie Glaze and David Van Horn. Abstracting Abstract Control. In
DLS’14, Proceedings of the 10th ACM Symposium on Dynamic Languages, part
of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 11–22, 2014.

[68] Dionna Amalie Glaze, Nicholas Labich, Matthew Might, and David Van Horn.
Optimizing Abstract Abstract Machines. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA - Septem-
ber 25 - 27, 2013, pages 443–454, 2013.

244

https://docs.python.org/devguide/runtests.html
https://docs.python.org/devguide/runtests.html
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
http://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://github.com/github/semantic

[69] Sebastian Graf, Simon Peyton Jones, and Ryan G Scott. Lower your guards:
A compositional pattern-match coverage checker. Proceedings of the ACM on
Programming Languages, 4(ICFP):1–30, 2020.

[70] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. High-Performance Cross-Language Interoperability in
a Multi-Language Runtime. In Proceedings of the 11th Symposium on Dynamic
Languages, DLS 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, pages 78–90, 2015.

[71] Miguel Grinberg. Flask Web Development: Developing Web Applications with
Python. O’Reilly Media, Inc., 2014.

[72] William G. Griswold. Direct Update of Data Flow Representations for a
Meaning-Preserving Program Restructuring Tool. In SIGSOFT ’93, Proceed-
ings of the First ACM SIGSOFT Symposium on Foundations of Software En-
gineering, Los Angeles, California, USA, December 7-10, 1993, pages 42–55,
1993.

[73] Sumit Gulwani. Automating String Processing in Spreadsheets using Input-
Output Examples. ACM Sigplan Notices, 46(1):317–330, 2011.

[74] John Hannan and Dale Miller. From Operational Semantics to Abstract Ma-
chines. Mathematical Structures in Computer Science, 2(4):415–459, 1992.

[75] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the Undefinedness
of C. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,
pages 336–345, 2015.

[76] Jan Heering and Ralf Lämmel. Generic Software Transformations. In Proceed-
ings of the Software Transformation Systems Workshop, 2004.

[77] Benedikt Huber. language-c: Analysis and Generation of C Code. http://

hackage.haskell.org/package/language-c, 2016.

[78] Cornelis Huizing, Ron Koymans, and Ruurd Kuiper. A Small Step for Mankind.
In Concurrency, Compositionality, and Correctness, pages 66–73. Springer,
2010.

[79] Husain Ibraheem and David A Schmidt. Adapting Big-Step Semantics to Small-
Step Style: Coinductive Interpretations and "Higher-Order" Derivations. Elec-
tronic Notes in Theoretical Computer Science, 10:121, 1997.

[80] Suresh Jagannathan and Stephen Weeks. A Unified Treatment of Flow Analysis
in Higher-Order Languages. In Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pages 393–407, 1995.

245

http://hackage.haskell.org/package/language-c
http://hackage.haskell.org/package/language-c

[81] Michael B James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ran-
jit Jhala, and Nadia Polikarpova. Digging for Fold: Synthesis-Aided API
Discovery for Haskell. Proceedings of the ACM on Programming Languages,
4(OOPSLA):1–27, 2020.

[82] JDK Bug System. javac crash when local from enclosing context is captured
multiple times. https://bugs.openjdk.java.net/browse/JDK-8169345, 2016.

[83] Julian Jensen. ast-flow-graph. https://github.com/julianjensen/

ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2, 2020.

[84] Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S Foster, and Ar-
mando Solar-Lezama. Synthesizing Framework Models for Symbolic Execution.
In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 156–167. IEEE, 2016.

[85] Neil D Jones. Flow Analysis of Lambda Expressions. In International Collo-
quium on Automata, Languages, and Programming, pages 114–128. Springer,
1981.

[86] Jasper FT Kamperman and Humphrey Robert Walters. ARM Abstract Rewrit-
ing Machine. 1993.

[87] Lennart CL Kats and Eelco Visser. The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs, volume 45. ACM, 2010.

[88] Andy King and Mark Longley. Abstract Matching Can Improve on Abstract
Unification. 1995.

[89] Oleg Kiselyov. Typed Tagless Final Interpreters. In Generic and Indexed Pro-
gramming, pages 130–174. Springer, 2012.

[90] Csongor Kiss, Matthew Pickering, and Nicolas Wu. Generic Deriving of Generic
Traversals. Proceedings of the ACM on Programming Languages, 2(ICFP):1–30,
2018.

[91] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming
with Rascal. In International Summer School on Generative and Transforma-
tional Techniques in Software Engineering, pages 222–289. Springer, 2009.

[92] Edward A. Kmett. lens: Lenses, Folds and Traversals. http://hackage.haskell.
org/package/lens-4.19.2, April 2020.

[93] James Koppel. Version Space Algebras are Acyclic Tree Automata, 2021.

[94] James Koppel, Jackson Kearl, and Armando Solar-Lezama. Automatically De-
riving Control-Flow Graph Generators from Operational Semantics, 2020.

246

https://bugs.openjdk.java.net/browse/JDK-8169345
https://github.com/julianjensen/ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2
https://github.com/julianjensen/ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2
http://hackage.haskell.org/package/lens-4.19.2
http://hackage.haskell.org/package/lens-4.19.2

[95] James Koppel, Sreenidhi Nair, and Armando Solar-Lezama. One CFG-
Generator to Rule them All. http://www.jameskoppel.com/files/papers/cubix_

cfg.pdf.

[96] James Koppel, Varot Premtoon, and Armando Solar-Lezama. One Tool, Many
Languages: Language-Parametric Transformation with Incremental Parametric
Syntax. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
28, 2018.

[97] James Koppel, Gabriel Scherer, and Armando Solar-Lezama. Capturing the
Future by Replaying the Past (Functional Pearl). Proceedings of the ACM on
Programming Languages, 2(ICFP):76, 2018.

[98] Ralf Lämmel. Towards Generic Refactoring. In Proceedings of the 2002 ACM
SIGPLAN workshop on Rule-based programming, pages 15–28. ACM, 2002.

[99] Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming, volume 38. ACM, 2003.

[100] Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic Programming Meets
Adaptive Programming. In Proceedings of the 2Nd International Conference on
Aspect-oriented Software Development, AOSD ’03, pages 168–177, New York,
NY, USA, 2003. ACM.

[101] Ralf Lämmel and Joost Visser. Typed Combinators for Generic Traversal. In
International Symposium on Practical Aspects of Declarative Languages, pages
137–154. Springer, 2002.

[102] Ralf Lämmel and Joost Visser. A Strafunski Application Letter. In Interna-
tional Symposium on Practical Aspects of Declarative Languages, pages 357–375.
Springer, 2003.

[103] Dallas S Lankford. Canonical Inference. University of Texas, Department of
Mathematics and Computer Sciences, 1975.

[104] Thomas D LaToza and Brad A Myers. Hard-to-Answer Questions about Code.
In Evaluation and Usability of Programming Languages and Tools, pages 1–6.
2010.

[105] Thomas David LaToza. Answering Reachability Questions. PhD thesis,
Carnegie Mellon University, 2012.

[106] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March
2004, San Jose, CA, USA, pages 75–88, 2004.

247

http://www.jameskoppel.com/files/papers/cubix_cfg.pdf
http://www.jameskoppel.com/files/papers/cubix_cfg.pdf

[107] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. Pro-
gramming by Demonstration Using Version Space Algebra. Machine Learning,
53(1):111–156, 2003.

[108] Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and Modular
Interpreters. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 333–343. ACM, 1995.

[109] Jay P Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte.
An Approach to Generate Correctly Rounded Math Libraries for New Float-
ing Point Variants. Proceedings of the ACM on Programming Languages,
5(POPL):1–30, 2021.

[110] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification: Java SE 8 Edition. Pearson Education, 2014.

[111] Michael Löwe. Algebraic Approach to Single-Pushout Graph Transformation.
Theoretical Computer Science, 109(1-2):181–224, 1993.

[112] Thibaud Lutellier, Lawrence Pang, Hung Viet Pham, Moshi Wei, and Lin Tan.
ENCORE: ensemble learning using convolution neural machine translation for
automatic program repair. CoRR, abs/1906.08691, 2019.

[113] Sam Madden. 6.830 Lab 1: SimpleDB. http://db.csail.mit.edu/6.830/

assignments/lab1.html, 2017.

[114] Panagiotis Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, 2001.

[115] Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew Fitzgibbon, and Simon
Peyton Jones. Hashing Modulo Alpha-Equivalence. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pages 960–973, 2021.

[116] Jan Midtgaard. Control-flow Analysis of Functional Programs. ACM Comput.
Surv., 44(3):10:1–10:33, June 2012.

[117] Jan Midtgaard and Thomas P. Jensen. Control-flow Analysis of Function Calls
and Returns by Abstract Interpretation. In Proceedings of the 14th ACM SIG-
PLAN International Conference on Functional Programming.

[118] Jan Midtgaard and Thomas P. Jensen. A Calculational Approach to Control-
Flow Analysis by Abstract Interpretation. In Static Analysis, 15th International
Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings, pages
347–362, 2008.

[119] Leon Moonen. Generating Robust Parsers Using Island Grammars. In Reverse
Engineering, 2001. Proceedings. Eighth Working Conference on, pages 13–22.
IEEE, 2001.

248

http://db.csail.mit.edu/6.830/assignments/lab1.html
http://db.csail.mit.edu/6.830/assignments/lab1.html

[120] Peter D. Mosses. Modular Structural Operational Semantics. J. Log. Algebr.
Program., 60-61:195–228, 2004.

[121] Chandrakana Nandi, Max Willsey, Adam Anderson, James R Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. Synthesizing Structured CAD
models with Equality Saturation and Inverse Transformations. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 31–44, 2020.

[122] Greg Nelson and Derek C. Oppen. Simplification by Cooperating Decision
Procedures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[123] Greg Nelson and Derek C. Oppen. Fast Decision Procedures Based on Congru-
ence Closure. J. ACM, 27(2):356–364, 1980.

[124] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 2015.

[125] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland
Procedure to DPLL (T). Journal of the ACM (JACM), 53(6):937–977, 2006.

[126] Nathaniel Nystrom, Michael R Clarkson, and Andrew C Myers. Polyglot: An
Extensible Compiler Framework for Java. In International Conference on Com-
piler Construction, pages 138–152. Springer, 2003.

[127] Bruno CdS Oliveira and William R Cook. Functional Programming with Struc-
tured Graphs. In Proceedings of the 17th ACM SIGPLAN international confer-
ence on Functional programming, pages 77–88, 2012.

[128] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. Filling Typed Holes with Live GUIs. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Im-
plementation, pages 511–525, 2021.

[129] Ömer Sinan Ağacan and Eric Mertens. language-lua: Lua Parser and
Pretty-Printer. http://hackage.haskell.org/package/language-lua-0.10.0, Au-
gust 2016.

[130] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Doc-
umenting and Automating Collateral Evolutions in Linux Device Drivers. Acm
sigops operating systems review, 42(4):247–260, 2008.

[131] Pavel Panchekha and Emina Torlak. Automated Reasoning for Web Page Lay-
out. In Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages
181–194, 2016.

249

http://hackage.haskell.org/package/language-lua-0.10.0

[132] Daejun Park, Andrei Stefănescu, and Grigore Roşu. KJS: A Complete Formal
Semantics of JavaScript. In ACM SIGPLAN Notices, volume 50, pages 346–356.
ACM, 2015.

[133] Corina S Păsăreanu, Radek Pelánek, and Willem Visser. Concrete Model Check-
ing with Abstract Matching and Refinement. In International Conference on
Computer Aided Verification, pages 52–66. Springer, 2005.

[134] Joshua Pollock and Altan Haan. E-Graphs Are Minimal Deterministic Finite
Tree Automata (DFTAs) · Discussion #104 · egraphs-good/egg, 2021.

[135] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A Framework for Inductive
Program Synthesis. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, pages 107–126, 2015.

[136] Justin Pombrio, Shriram Krishnamurthi, and Mitchell Wand. Inferring Scope
through Syntactic Sugar. Proceedings of the ACM on Programming Languages,
1(ICFP):44, 2017.

[137] Pombrio, Justin and Krishnamurthi, Shriram. Inferring Type Rules for Syntac-
tic Sugar. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 812–825. ACM, 2018.

[138] Bernard James Pope. language-python: Parsing and Pretty Printing of Python
Code. http://hackage.haskell.org/package/language-python-0.5.4, July 2016.

[139] Casper Bach Poulsen and Peter D Mosses. Deriving Pretty-Big-Step Semantics
from Small-Step Semantics. In European Symposium on Programming Lan-
guages and Systems, pages 270–289. Springer, 2014.

[140] Varot Premtoon. Multi-Language Code Search. Master’s thesis, Massachusetts
Institute of Technology, 2019.

[141] Varot Premtoon, James Koppel, and Armando Solar-Lezama. Semantic Code
Search via Equational Reasoning. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 1066–
1082, 2020.

[142] LLVM project authors. Clang. https://github.com/llvm/llvm-project/tree/

eed333149d178b69fdaf39b9419b7ca032520182, 2020.

[143] Polyglot project authors. Polyglot. https://github.com/polyglot-compiler/

polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7, 2020.

[144] PUC-Rio. Lua: Test suites. Version 5.3.3. https://www.lua.org/tests/, 2016.

[145] Andreas Reuß and Helmut Seidl. Bottom-up Tree Automata with Term Con-
straints. In International Conference on Logic for Programming Artificial In-
telligence and Reasoning, pages 581–593. Springer, 2010.

250

http://hackage.haskell.org/package/language-python-0.5.4
https://github.com/llvm/llvm-project/tree/eed333149d178b69fdaf39b9419b7ca032520182
https://github.com/llvm/llvm-project/tree/eed333149d178b69fdaf39b9419b7ca032520182
https://github.com/polyglot-compiler/polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7
https://github.com/polyglot-compiler/polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7
https://www.lua.org/tests/

[146] Charles Rich and Richard C Waters. The Programmer’s Apprentice. Computer,
21j(11):10–25, 1988.

[147] Camilo Rocha, José Meseguer, and César Muñoz. Rewriting Modulo SMT and
Open System Analysis. Journal of Logical and Algebraic Methods in Program-
ming, 86(1):269–297, 2017.

[148] Grigore Roşu and Traian Florin Şerbănută. An Overview of the K Semantic
Framework. The Journal of Logic and Algebraic Programming, 79(6):397–434,
2010.

[149] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian G. Elbaum. How Devel-
opers Search for Code: A Case Study. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo,
Italy, August 30 - September 4, 2015, pages 191–201, 2015.

[150] David A Schmidt. Abstract Interpretation of Small-Step Semantics. In
LOMAPS Workshop on Analysis and Verification of Multiple-Agent Languages,
pages 76–99. Springer, 1996.

[151] Semantic Designs, Inc. Test Coverage tools. http://www.semanticdesigns.com/

Products/TestCoverage/, 2005.

[152] Ilya Sergey and Dave Clarke. From Type Checking by Recursive Descent to
Type Checking with an Abstract Machine. In Proceedings of the Eleventh Work-
shop on Language Descriptions, Tools and Applications, page 2. ACM, 2011.

[153] Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David
Darais, Dave Clarke, and Frank Piessens. Monadic Abstract Interpreters. In
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 399–410, 2013.

[154] Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury.
Concolic Program Repair. In Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation,
pages 390–405, 2021.

[155] Tim Sheard and Simon Peyton Jones. Template Meta-Programming for Haskell.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, pages 1–16.
ACM, 2002.

[156] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, 1991.

[157] Jeff Smits and Eelco Visser. FlowSpec: Declarative Dataflow Analysis Speci-
fication. In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering, pages 221–231, 2017.

251

http://www.semanticdesigns.com/Products/TestCoverage/
http://www.semanticdesigns.com/Products/TestCoverage/

[158] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. Demanded Abstract
Interpretation. In Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, pages 282–295,
2021.

[159] Bjarne Stroustrup. The C++ Programming Language. Pearson Education,
2013.

[160] Wouter Swierstra. Data Types à la Carte. Journal of Functional Programming,
18(04):423–436, 2008.

[161] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. IncA: A DSL for the
Definition of Incremental Program Analyses. In Automated Software Engineer-
ing (ASE), 2016 31st IEEE/ACM International Conference on, pages 320–331.
IEEE, 2016.

[162] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality Satu-
ration: A New Approach to Optimization. In Proceedings of the Symposium on
Principles of Programming Languages, Savannah, GA, 2009.

[163] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality Sat-
uration: A New Approach to Optimization. In Proceedings of the 36th an-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 264–276, 2009.

[164] ECMA TC39. Test262: ECMAScript Language Conformance Test Suite. Ver-
sion 5.1. http://test262.ecmascript.org, 2014.

[165] Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and
Mukund Raghothaman. Example-Guided Synthesis of Relational Queries. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, pages 1110–1125, 2021.

[166] Danny van Bruggen. JavaParser: Process Java Code Programmatically. http:

//javaparser.org, 2016.

[167] Mark van de Brand, Jan Heering, Paul Klint, Ralf Lämmel, and Christian
Verhoef. Language-Parametric Program Restructuring. http://www.cs.vu.nl/

lppr/abstract/abstract.html, 2003.

[168] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Vari-
ability in Software Product Lines. In Software Architecture, 2001. Proceedings.
Working IEEE/IFIP Conference on, pages 45–54. IEEE, 2001.

[169] David Van Horn and Matthew Might. Abstracting Abstract Machines. In
15th ACM SIGPLAN International Conference on Functional Programming,
ICFP’10, 2010.

252

http://test262.ecmascript.org
http://javaparser.org
http://javaparser.org
http://www.cs.vu.nl/lppr/abstract/abstract.html
http://www.cs.vu.nl/lppr/abstract/abstract.html

[170] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,
Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. Automati-
cally Eliminating Speculative Leaks from Cryptographic Code with Blade. Pro-
ceedings of the ACM on Programming Languages, 5(POPL):1–30, 2021.

[171] Ferdinand Vesely and Kathleen Fisher. One Step at a Time. In European
Symposium on Programming, pages 205–231. Springer, Cham, 2019.

[172] Eelco Visser. A Survey of Strategies in Rule-Based Program Transformation
Systems. Journal of Symbolic Computation, 40(1):831–873, 2005.

[173] Sebastiaan Visser, Erik Hesselink, Chris Eidhof, and Sjoerd Visscher. fclabels:
First Class Accessor Labels Implemented as Lenses. http://hackage.haskell.

org/package/fclabels-2.0.5, May 2020.

[174] Markus Voelter and Vaclav Pech. Language Modularity with the MPS Language
Workbench. In 2012 34th International Conference on Software Engineering
(ICSE), pages 1449–1450. IEEE, 2012.

[175] Philip Wadler. Views: A Way for Pattern Matching to Cohabit with Data
Abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 307–313. ACM, 1987.

[176] Philip Wadler. The Expression Problem. Java-genericity mailing list, 1998.

[177] Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of Data Completion
Scripts using Finite Tree Automata. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–26, 2017.

[178] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program Synthesis using Abstrac-
tion Refinement. Proc. ACM Program. Lang., 2(POPL):63:1–63:30, 2018.

[179] Guannan Wei, James Decker, and Tiark Rompf. Refunctionalization of Abstract
Abstract Machines: Bridging the Gap Between Abstract Abstract Machines and
Abstract Definitional Interpreters (Functional Pearl). Proceedings of the ACM
on Programming Languages, 2(ICFP):105, 2018.

[180] Stefan Wellek. Testing Statistical Hypotheses of Equivalence and Noninferiority.
CRC Press, 2010.

[181] Wikipedia contributors. Duff’s device — Wikipedia, the free encyclopedia,
2021. [Online; accessed 25-August-2021].

[182] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary
Tatlock, and Pavel Panchekha. Egg: Fast and Extensible Equality Saturation.
Proceedings of the ACM on Programming Languages, 5(POPL):1–29, 2021.

253

http://hackage.haskell.org/package/fclabels-2.0.5
http://hackage.haskell.org/package/fclabels-2.0.5

[183] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
One VM to Rule Them All. In ACM Symposium on New Ideas in Programming
and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 187–204, 2013.

[184] Yong Xiao, Amr Sabry, and Zena M. Ariola. From Syntactic Theories to In-
terpreters: Automating the Proof of Unique Decomposition. Higher-Order and
Symbolic Computation, 14(4):387–409, 2001.

[185] Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan Jeur-
ing. Generic Programming with Fixed Points for Mutually Recursive Datatypes.
In Proceeding of the 14th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - Septem-
ber 2, 2009, pages 233–244, 2009.

[186] Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm.
Scrap Your Boilerplate with Object Algebras. In Proceedings of the 2015
ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015,
Pittsburgh, PA, USA, October 25-30, 2015, pages 127–146, 2015.

[187] Shaowei Zhu and Zachary Kincaid. Termination Analysis without the Tears.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, pages 1296–1311, 2021.

[188] Alan Zimmerman. language-javascript: Parser for JavaScript. http://hackage.

haskell.org/package/language-javascript-0.6.0.9, November 2016.

254

http://hackage.haskell.org/package/language-javascript-0.6.0.9
http://hackage.haskell.org/package/language-javascript-0.6.0.9

Appendix A

The ADT Modularization

Transformation

This appendix gives a formal definition for the ADT modularization transformation

implemented in comptrans, described in Section 2.3.4. This algorithm transforms a

syntax definition given as a family of mutually recursive ADTs into an equivalent

definition in the sum-of-signatures representations, expressed as a collection of GADT

definitions combined with an explicit sum and fixpoint.

Figure A-1 gives a syntax for GADTs. GADTs and ADTs are given as a set of

constructors with a given type. We assume that there is a corresponding set of type

constructors. We assume that ADTs have monomorphic types, and their associated

constructors have the base kind. Conversely, GADTs may have polymorphic types

with equality constraints, and their constructors may have higher kinds. We use the

syntax ∀𝜈 : 𝑘.𝐷 ⇒ 𝜎 as sugar for nested forall types. The language includes two

“container” functors, lists and pairs, to give an example of how the transformation

deals with containers embedded in syntax trees. Figure A-2 gives the kinding rules for

ADTs and GADTs which check if the constructor types are well-formed. Γ is a local

context storing all type variables in scope, while we assume Φ has been populated

with the types of all constructors declared.

To close a set of GADT definitions into a sum-of-signatures representation of

a syntax, the language must be extended with sum and recursive types, and with

255

the ability to instantiate a polymorphic type. Figure A-3 gives this extension and

the corresponding typing rules. Note that the sum types in this language are of

polymorphic kind. To avoid the need to track constraints with variables, the rule for

polymorphic type application recurses into the left-hand side until the constraint can

be checked syntactically. This has the unfortunate consequence that kind-checking

may become circular. These typing rules should hence be interpreted with greatest

fixed point semantics, meaning that circularly-defined judgments hold.

Figure A-5 gives the transformation algorithm. The transformation replaces every

ADT constructor with a type of kind * with a GADT constructor with a type con-

structor of kind (* → *)→ * → *. More importantly, these GADT type constructors

do not refer to any other type definitions, with the exception of the “label” types,

which are purely nominal and uninhabited. It makes use of three auxiliary functions.

newcon(con) returns a fresh name for a GADT constructor. newconType(𝜈) does

similar for the corresponding type constructors. lab(𝐶) maps each constructor 𝐶 to

a corresponding “label” constructor of kind *.
Of final note, in order to inhabit terms of sort List 𝛾 or Pair 𝛾 𝜄, there are three

specially-defined constructors, given in Figure A-4. These are given Curry-style types,

meaning their types contain an unbound variable, and they may be given a type for

any instantiation of that variable.

We are now ready to state the property this transformation was designed to satisfy:

For a family of mutually recursive ADTs defined by 𝑐𝑜𝑛𝜎 with root type 𝐶, 𝐶 is

equivalent to the sum of the generated GADTs at sort lab(𝐶). Formally, if Φ contains

the types for all declared ADT constructors and Φ ⊢ 𝑐𝑜𝑛𝜎 okay, then

Φ ⊢ 𝐶 ≡ (𝜇𝛼 : * → *.(PairF + ListF +
∑︁

𝑠∈𝜎
transType(𝑠)) 𝛼) lab(𝐶)

Here, ≡ denotes the classical notion of a type isomorphism, i.e.: the presence

of a pair of mutually inverse functions that convert from one to the other. This is

still an informal statement, albeit in formal notation, as we have not fully defined

the language of terms which is needed to make this statement fully rigorous. The

description in this appendix is meant only to unambiguously describe the algorithm.

256

Type variables 𝛼, 𝛽, . . .
Predefined constructors C

Kinds 𝑘 ::= * | 𝑘 → 𝑘

Primitive types 𝑃 ::= Int | Bool | . . .
Container functors 𝐹 ::= List | Pair

Base types 𝜈 ::= 𝛼 | 𝐶 | 𝐹 | 𝑃 | 𝜈𝜈
Monotypes 𝜏 ::= 𝜈 | 𝜈 → 𝜏
Constraints 𝐷 ::= · | 𝛼 ∼ 𝜈

Polytypes 𝜎 ::= 𝜏 | ∀𝛼 : 𝑘.𝐷 ⇒ 𝜎

Constructors 𝑐 ::= con𝜎

Figure A-1: A syntax for GADTs

Γ; Φ ⊢ 𝑃 : * 𝑃𝑅𝐼𝑀

Γ; Φ ⊢ List : * → * 𝐿𝐼𝑆𝑇

Γ; Φ ⊢ Pair : * → * → * 𝑃𝐴𝐼𝑅

𝛼 : 𝑘 ∈ Γ
Γ; Φ ⊢ 𝛼 : 𝑘

𝑉 𝐴𝑅

𝐶 : 𝑘 ∈ Φ
Γ; Φ ⊢ 𝐶 : 𝑘

𝐶𝑂𝑁

Γ; Φ ⊢ 𝜈 : * Γ; Φ ⊢ 𝜏 : *
Γ; Φ ⊢ 𝜈 → 𝜏 : * 𝐴𝑅𝑅

Γ, 𝛼 : 𝑘1; Φ ⊢ 𝜎 : 𝑘2
Γ; Φ ⊢ ∀𝛼 : 𝑘1.𝐷 ⇒ 𝜎 : 𝑘1 → 𝑘2

𝐹𝑂𝑅𝐴𝐿𝐿

Γ; Φ ⊢ 𝜈1 : 𝑘1 → 𝑘2 Γ; Φ ⊢ 𝜈2 : 𝑘1
Γ; Φ ⊢ 𝜈1𝜈2 : 𝑘2

𝐴𝑃𝑃

·; Φ ⊢ 𝜎 : *
Φ ⊢ con𝜎 okay

Figure A-2

257

𝜎 ::= . . . | 𝜎 + 𝜎 | 𝜇𝛼 : 𝑘. 𝜎 | 𝜎𝜎

Γ; Φ ⊢ 𝜎1 : 𝑘 Γ; Φ ⊢ 𝜎2 : 𝑘

Γ; Φ ⊢ 𝜎1 + 𝜎2 : 𝑘
𝑃𝑂𝐿𝑌 − 𝑆𝑈𝑀

Γ, 𝛼 : 𝑘; Φ ⊢ 𝜎 : 𝑘

Γ; Φ ⊢ 𝜇𝛼 : 𝑘.𝜎 : 𝑘
𝑅𝐸𝐶

Γ,Φ ⊢ 𝜎1 + 𝜎2 : 𝑘′ Γ,Φ ⊢ 𝜎1𝜎3 : 𝑘

Γ,Φ ⊢ (𝜎1 + 𝜎2)𝜎3 : 𝑘
𝑃𝑂𝐿𝑌 − 𝐴𝑃𝑃 − 𝑆𝑈𝑀 − 𝐿𝐸𝐹𝑇

Γ,Φ ⊢ 𝜎1 + 𝜎2 : 𝑘′ Γ,Φ ⊢ 𝜎2𝜎3 : 𝑘

Γ,Φ ⊢ (𝜎1 + 𝜎2)𝜎3 : 𝑘
𝑃𝑂𝐿𝑌 − 𝐴𝑃𝑃 − 𝑆𝑈𝑀 −𝑅𝐼𝐺𝐻𝑇

Γ,Φ ⊢ (𝜇𝛼 : 𝑘.𝜎) : 𝑘 Γ,Φ ⊢ (𝜎[(𝜇𝛼 : 𝑘. 𝜎)/𝛼])𝜎′ : 𝑘′

Γ,Φ ⊢ (𝜇𝛼 : 𝑘. 𝜎)𝜎′ : 𝑘′ 𝑃𝑂𝐿𝑌 − 𝐴𝑃𝑃 −𝑅𝐸𝐶

Γ,Φ ⊢ 𝜈 : 𝑘′ Γ,Φ ⊢ 𝜎[𝜈/𝛼] : 𝑘

Γ,Φ ⊢ (∀𝛼 : 𝑘′.· ⇒ 𝜎)𝜈 : 𝑘
𝑃𝑂𝐿𝑌 − 𝐴𝑃𝑃

Γ,Φ ⊢ 𝜈 : 𝑘′ Γ,Φ ⊢ 𝜎[𝜈/𝛼] : 𝑘

Γ,Φ ⊢ (∀𝛼 : 𝑘′.𝛼 ∼ 𝜈 ⇒ 𝜎)𝜈 : 𝑘
𝑃𝑂𝐿𝑌 − 𝐴𝑃𝑃 − 𝐶𝑂𝑁𝑆𝑇𝑅𝐴𝐼𝑁𝑇

Figure A-3

ConsF : ∀ (𝛼 : * → *) (𝛾 : *).𝛾 ∼ 𝐿𝑖𝑠𝑡 𝜄⇒ 𝛼 𝜄 → 𝛼 𝛾 → ListF 𝛼 𝛾

(for any 𝜄)
NilF : ∀ (𝛼 : * → *) (𝛾 : *).𝛾 ∼ 𝐿𝑖𝑠𝑡 𝜄⇒ ListF 𝛼 𝛾

(for any 𝜄)
PairF : ∀(𝛼 : * → *) (𝛾 : *).𝛾 ∼ (Pair 𝜄 𝜅)⇒ 𝛼 𝜄→ 𝛼 𝜅→ PairF 𝛼 𝛾

(for any 𝜄, 𝜅)

Figure A-4

258

trans(con𝜏)

trans(con𝜏) = newcon(con)transTypeTop(𝜏)

transTypeTop(𝜏)

transTypeTop(𝜏) = ∀(𝛼 : * → *). · ⇒ (∀ (𝛾 : *). 𝛾 ∼ getSort(𝜏) ⇒
transType(𝜏, 𝛼, 𝛾))

getSort(𝜏)

getSort(𝜈 → 𝜏) = getSort(𝜏)
getSort(𝐶) = lab(𝐶)

transType(𝜏, 𝛼, 𝛾)

transType(𝜈 → 𝜏, 𝛼, 𝛾) = transTypeBase(𝜈, 𝛼, 𝛾)→ transType(𝜏, 𝛼, 𝛾)
transType(𝐶, 𝛼, 𝛾) = newconType(𝐶) 𝛼 𝛾

transTypeBase(𝜈, 𝛼, 𝛾)

transTypeBase(𝑃, 𝛼, 𝛾) = 𝑃

transTypeBase(𝐹𝜈, 𝛼, 𝛾) = 𝛼 (𝐹 transTypeBase(𝜈))
transTypeBase(𝐶, 𝛼, 𝛾) = 𝛼 lab(𝐶)

Figure A-5

259

260

Appendix B

Proofs for Mandate

B.1 Correctness of SOS-AM Translation

This section proves the correspondence between the operational semantics and ab-

stract machine. We begin by proving the correspondence between operational seman-

tics and PAM. We then prove an important consequence of invertible up rules, and

then prove the correspondence between PAM and the abstract machine.

The core idea of the correspondence is simple: The PAM emulates the SOS be-

cause each PAM rule was explicitly constructed to correspond to an RHS fragment

of the SOS. The PAM and AM are equivalent because the AM merely removes some

redundant steps from the PAM, and because the fused rules in the AM each corre-

spond to several rules in the PAM. However, a PAM derivation may have some “false

starts” corresponding to a partially-applied SOS rule, and so there are some additional

technical details to explain which states are included in the correspondences.

B.1.1 SOS-PAM Correspondence

The goal of this section is to prove the main theorem of SOS-PAM correspondence:

Theorem 4.4.1. 𝑐1 ;*
𝑙 𝑐2 if and only if, for all contexts 𝐾,

⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙

⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑

The forward direction is easy, because the PAM rules were designed to follow in

lockstep with each component of the SOS rules. The reverse-direction appears harder,

261

but is rendered easy by two important facts:

Observation B.1.1. From the LHS of each PAM rule, it is possible to identify the

arguments 𝑠,𝐾, rhs of sosRhsToPam that generated it.

This is because each case generates rules in a distinct form, and each generated

rule contains all of the parameters of sosRhsToPam. (Note that LHSs originating

on line (1) of Figure 4-12 must be non-values, while those from line (4) must be a

value.)

Property B.1.2 (Sanity of Phase). The following three properties hold:

1. If
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ and 𝐾 ′ contains strictly more stack frames than

𝐾, then ↕𝑐=↕𝑐′=↓, and 𝐾 ′ = 𝐾 ∘ 𝑓 for some 𝑓 .

2. If
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ and 𝐾 ′ contains strictly fewer stack frames than

𝐾, then ↕𝑐′=↑, and 𝐾 = 𝐾 ′ ∘ 𝑓 for some 𝑓 .

3. If the PAM rules for language 𝑙 have no up-down rules, and
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ without using the reset rule, then ↕𝑐′=↑, and 𝐾 = 𝐾 ′ ∘ 𝑓 for some

𝑓 .

These properties follow by inspection of the possible rules. We now prove Theorem

4.4.1 as a corollary of a stronger result:

Lemma B.1.3. 𝑐1 ;𝑙 𝑐2 if and only if, for all 𝐾, there is a derivation
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑ which does not use the reset rule. This derivation must use the same

sequence of rules regardless of 𝐾.

Proof. We address each direction.

(⇒): Let 𝐾 be an arbitrary context, and consider a derivation of 𝑐1 ; 𝑐2. By in-

duction on the last SOS rule applied, we prove there exists a derivation
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓*

⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑ .

Let the last SOS rule used take the form 𝑐1 ; 𝐶1[. . . 𝐶𝑛[𝑐2]], where each 𝐶𝑖 is a sin-

gle RHS fragment. We define 𝑅 to be the remaining fragments, 𝑅 = 𝐶𝑖+1[. . . 𝐶𝑛[𝑐2]].

We induct again on 𝑖 to show that
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓* 𝑠𝑖, where:

262

1. If 𝑖 = 0 (base case), then 𝑠𝑖 =
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ .

2. If 𝐶𝑖 is of the form let [𝑐 ; 𝑐′] in �, then

𝑠𝑖 =
⟨︀
𝑐′
⃒⃒
𝐾 ∘ [𝑐′ → 𝑅]

⟩︀↑

3. If 𝐶𝑖 is of the form let 𝑐′ = 𝑓(𝑐) in �, then

𝑠𝑖 =
⟨︀
𝑐′
⃒⃒
𝐾 ∘ [𝑐′ → 𝑅]

⟩︀↓

and further, the PAM system contains rules generated by sosRhsToPam(𝑠𝑖, 𝑘, 𝑅)

for some context variable 𝑘. We handle each case:

1. Satisfied by the empty transition sequence and definition of sosRuleToPam.

2. Then there is a rule that 𝑠 →˓
⟨︀
𝑐
⃒⃒
𝐾 [𝑐′ → 𝑅]

⟩︀↓ . By inversion of the SOS

derivation, we must have that 𝑐 ; 𝑐′. Then, by the outer induction hypothesis,
⟨︀
𝑐
⃒⃒
𝐾 [𝑐′ → 𝑅]

⟩︀↓ →˓* ⟨︀
𝑐′
⃒⃒
𝐾 [𝑐′ → 𝑅]

⟩︀↑ . The rest follows by line (3) of the

definition of sosRhsToPam.

3. Then there is a rule that 𝑠 →˓
⟨︀
𝑐′
⃒⃒
𝐾 [𝑐′ → 𝑅]

⟩︀↓ . The rest follows by line (4)

of the definition of sosRhsToPam.

The inner induction hypothesis for 𝐶𝑛 tells us that a rule 𝑠 →˓
⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑ must

exist, finishing the proof of the outer induction.

(⇐): We proceed by a strong induction on all derivations of the form
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙⟨︀
𝑐2
⃒⃒
𝐾
⟩︀↑ . Consider the first PAM rule of the derivation. Because it may not depend

on 𝐾, it must have an LHS generated on line (1) of Figure 4-12. By Observation

B.1.1, we can hence reconstruct the entire originating SOS rule, 𝑐1 ; 𝐶1[. . . 𝐶𝑛[𝑐2]].

We show that 𝑐1 ; 𝑐2 by this rule.

The proof proceeds similarly to the forward direction, so we omit more details. We

induct over 𝑖, and show that there must be a prefix of the derivation
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ →˓* 𝑠𝑖,

263

where 𝑠0 =
⟨︀
𝑐1
⃒⃒
𝐾
⟩︀↓ and 𝑠𝑖 is a state corresponding to the computation of 𝐶𝑖. Each

𝑠𝑖 matches the LHS of the PAM rule used in the derivation; Observation B.1.1 tells us

this rule must be the one generated for 𝐶𝑖+1. The only interesting case is for recursive

steps; there, 𝑠𝑖 =
⟨︀
𝑐
⃒⃒
𝐾 ′⟩︀↓ , and the Sanity of Phase properties dictate there must

be a later state in the derivation
⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↑ ; applying the outer inductive hypothesis

finishes this case.

B.1.2 Invertibility

Our goal is to show that, if all up-rules are invertible (Definition 4.3.4), then, for

any 𝐾 and non-value 𝑐,
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↓ , thus justifying the optimizations of

Section 4.3.6, and characterizing which PAM states are and are not removed when

translating a derivation to AM. However, there are a few technical restrictions on

this.

Definition B.1.4. A configuration/context pair (𝑐,𝐾) is non-stuck if
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓*

⟨︀
𝑐′
⃒⃒
emp

⟩︀↑ for some 𝑐′.

Because each PAM rule corresponds to part of an SOS rule, our definition of

non-stuckness is different from the usual one: it is intended to exclude terms which

correspond to a partial match on an SOS rule. A single step 𝑐1 ; 𝑐2 in the SOS

corresponds to a sequence
⟨︀
𝑐1
⃒⃒
emp

⟩︀↓ →˓* ⟨︀
𝑐2
⃒⃒
emp

⟩︀↑ in the PAM, so a state is

non-stuck if it can complete the current step. Stuck states result from SOS rules

which only partially match a term. For example, the SOS rule

(𝑎.𝑏 := 𝑣, 𝜇) ; let (𝑟, 𝜇′) = Lookup((𝑎, 𝜇)) in

let false = ContainsField(𝑟, 𝑏) in (error, 𝜇)

decomposes into 3 PAM rules. Assuming Lookup succeeds, the first PAM rule brings
⟨︀
(𝑎.𝑏 := 𝑣, 𝜇)

⃒⃒
𝐾
⟩︀↓ into the state

264

⟨︀
(𝑟, 𝜇′)

⃒⃒
𝐾 ∘ [let false = ContainsField(�𝑡, 𝑏) in (error, 𝜇)]

⟩︀↓

If false ̸= ContainsField(𝑟, 𝑏), then this will be a stuck state.

Excluding stuck states is enough to prove the general Invertibility Lemma:

Lemma B.1.5 (Invertibility). If all up-rules for 𝑙 are invertible, and there are no up-

down rules for 𝑙 other than the reset rule, then, for any non-stuck non-value (𝑐,𝐾),
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↓ .

Proof. Consider a derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐′
⃒⃒
emp

⟩︀↑ . Because there are no up-

down rules, each step must follow from an up-rule. Hence, each step is invertible.

Applying each inverted step gives a new derivation
⟨︀
𝑐′
⃒⃒
emp

⟩︀↓ →˓* ⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ .

This requires that the term in the RHS of each step is a non-value, which also

follows because each rule is invertible, and hence the RHS can be reduced.

This motivates the definition of an inversion sequence. We add the condition about

the reset rule to prevent the definition from including arbitrarily large subsequences

of a nonterminating execution.

Definition B.1.6. An inversion sequence which begins at
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ is a sequence

of transitions
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↓ which contains at most one application of the

reset rule.

This idea of an inversion sequence partitions a derivation
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↓ →˓* ⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↓
into two parts: the inversion sequences, which do redundant work, and the remain-

der, which we call the working steps. Sometimes a derivation must be extended to

contain a complete inversion sequence, which is then eliminated upon the conversion

to an abstract machine.

Definition B.1.7. A reduction
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 →˓
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↕2 within a derivation is a

working step if the derivation cannot be extended so that
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↕1 is part of an

inversion sequence.

265

Observation B.1.8. If (𝑐,𝐾) is a non-stuck non-value and all up-rules are invertible,

then, by the Determinism Assumption, all sequences
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓* ⟨︀

𝑐′
⃒⃒
𝐾 ′⟩︀↕ may be

extended to contain an inversion sequence starting at
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ .

Corollary B.1.9. If a reduction
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ →˓ ⟨︀

𝑐′
⃒⃒
𝐾 ′⟩︀↑ cannot be extended to con-

tain an inversion sequence starting at
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↑ , then either (𝑐,𝐾) is stuck or 𝑐 is a

value.

With these extra properties, we are now ready to exactly state the PAM-AM

correspondence.

B.1.3 PAM-AM Correspondence

Intuitively, a derivation in the AM
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
→* ⟨︀𝑐2

⃒⃒
𝐾2

⟩︀
is the same as a derivation

in the PAM, but with the inversion sequences cut out and with some consecutive

steps merged into one. We prove this in steps. First, we show that if
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↓ →˓*

⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↓ , and the last transition is a working step, then
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
−→* ⟨︀

𝑐2
⃒⃒
𝐾2

⟩︀
.

Next we prove that every derivation in the Unfused AM corresponds to a deriva-

tion in the fused AM, but with some consecutive steps merged. We also prove the

reverse theorem, which is easier to state, as every state in an AM derivation has a

corresponding state in the PAM.

The forward direction comes first. This version of the theorem starts with tran-

sitions between down-states, to simplify consideration of which states may be elimi-

nated on conversion to AM.

Theorem 4.4.5 (PAM-Unfused AM: Forward). Suppose
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↓ ,

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↓ is non-stuck, and the derivation’s last step is working. Then there is a

derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀.

Proof. First, recall that, if −→𝑙 is defined, then all up-rules for 𝑙 are invertible.

Consider a derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↓ . Remove all maximal inversion

sequences. Then remove all phases from the PAM states, resulting in AM states.

This means that an inversion sequence
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↑ →˓* ⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↓ is replaced with a

single state
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
.

266

If we can show that all PAM rules for all remaining steps of the derivation have a

corresponding rule in the unfused abstract machines, then we will be done. Note that

the only PAM rules without a corresponding rule in the AM are those of the form
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↓ →˓ ⟨︀

𝑐
⃒⃒
𝐾
⟩︀↑ , and those of the form

⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀↑ →˓ ⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀↑ where 𝑐1 is a

non-value. The former correspond to stutter steps in the AM and may be ignored.

For the latter, because of the Determinism Assumption and Corollary B.1.9, all such

transitions must be part an inversion sequence, and were hence removed.

In the next two proofs, we use the notation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀ 𝐹→

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ to denote that

⟨︀
𝑐
⃒⃒
𝐾
⟩︀

steps to
⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ by rule F.

Theorem 4.4.6 (PAM-Unfused AM: Backward). If
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀, then there

are phases ↕𝑐 and ↕𝑐′ such that
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ .

Proof. Consider a derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀. For each rule of the unfused

abstract machine used in this derivation, consider the corresponding PAM rule that

generated it.

Let ↕𝑐 be the phase of the LHS of the first such rule. We will show that there is

↕𝑐′ such that
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ , obtained by replacing each AM rule with

its corresponding PAM rule and by inserting inversion sequences. We proceed by

induction on the derivation.

Consider the last step of the derivation
⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀ −→𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀. Consider the

AM rule of this last step, and let G be the PAM rule from which it originated,
⟨︀
𝑐1𝐺

⃒⃒
𝐾1

𝐺

⟩︀↕1𝐺
𝐺→˓𝑙 𝐶𝐺[

⟨︀
𝑐2𝐺

⃒⃒
𝐾2

𝐺

⟩︀↕2𝐺]. If G matches, it would finish the proof. In the

base case where there is only one step, taking ↕𝑐=↕1𝐺 and ↕𝑐′=↕2𝐺 suffices to make it

match.

If there is more than one step in the derivation, then, by the induction hypothesis,

there are phases ↕𝑐 and ↕𝑐′′ such that
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓*

𝑙

⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀↕𝑐′′ . Consider the

second-to-last step of the AM derivation
⟨︀
𝑐′′′

⃒⃒
𝐾 ′′′⟩︀ −→𝑙

⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀ and its generating

AM rule, and let the corresponding PAM rule be F. If the RHS of F matches the LHS

of G, we would be done. We hence must consider all PAM rules F, G such that the

RHS of F and LHS of G match except for the phase, meaning they would erroneously

267

match upon conversion to AM rules. Call such an (𝐹,𝐺) a confused pair. We perform

case analysis on Figure 4-12 to find all possible confused pairs, and for each find a

derivation
⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀↕𝑐′′ →˓*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀↕𝑐′ .

Figure 4-12 gives 3 possible forms of PAM RHSs, generated on lines (2), (3), and

(4), and 3 possible LHSs, generated on lines (1), (3), and (4). Note that some of

these only match values/non-values, and that, because of the prohibition on up-down

rules, all rules using the LHS from line (3) will be restricted to only match values.

This leaves only 3 possible forms for a confused pair: using the RHS/LHS generated

on lines (2)/(1), (2)/(4), and (4)/(3). We analyze each in turn. We find that the first

case is desirable, as it results from removing inversion sequences, while the other two

are benign, as another rule must exist that does match.

• (2)/(1): In this case, the RHS of a rule F, 𝑠
𝐹→˓𝑙

⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↑ , matches the LHS

of a rule G,
⟨︀
𝑐𝐺

⃒⃒
𝐾𝐺

⟩︀↓ 𝐺→˓𝑙 𝑡, where 𝑐𝐹 = 𝑐𝐺 upon matching with 𝑐′′. 𝑐𝐹 = 𝑐𝐺

must be a non-value because 𝑐𝐺 originates from a SOS rule 𝑐𝐺 ; 𝑟, and by the

Sanity of Values assumption. The invertibility lemma finishes this case.

• (2)/(4): In this case, the RHS of a rule F, 𝑠
𝐹→˓𝑙

⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↑ , matches the

LHS of a rule G,
⟨︀
𝑐𝐺

⃒⃒
𝐾𝐺

⟩︀↓ 𝐺→˓𝑙 𝑡. Further, after unifying with the current

state
⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀,

⟨︀
𝑐𝐹

⃒⃒
𝑘𝐹

⟩︀
=

⟨︀
𝑐𝐺

⃒⃒
𝑘𝐺

⟩︀
, and 𝑘𝐹 = 𝑘𝐺 can be written 𝑘𝐹 = 𝑘𝐺 =

𝑘 ∘ [𝑐𝐹 → rhs]. By the induction hypothesis, there is a derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀↕𝑐 →˓*

𝑙⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↑ . Extend the last transition of this derivation to a maximal sequence
⟨︀
𝑐′′𝐹

⃒⃒
𝐾 ′′

𝐹

⟩︀↓ 𝐻→˓𝑙

⟨︀
𝑐′𝐹

⃒⃒
𝐾𝐹

⟩︀↓ →˓𝑙 *
⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↑ which does not use the reset rule;

by the Sanity of Phase properties, this must exist, and Rule H must have been

created by line (3). By Observation B.1.1, we know that rule G was created by

an invocation matching sosRhsToPam(
⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↓ , 𝑘, rhs), while rule H was

created by an invocation matching

sosRhsToPam(
⟨︀
𝑐′′𝐹

⃒⃒
𝑘
⟩︀↓ , 𝑘, let [𝑥 ; 𝑐𝐹] in 𝑟ℎ𝑠)

which means there is also a rule J created by an invocation

268

sosRhsToPam(
⟨︀
𝑐𝐹

⃒⃒
𝐾𝐹

⟩︀↑ , 𝑘, rhs)

whose RHS is 𝑡. Using rule J completes this case.

• (4)/(3): In this case, the RHS of a rule F, 𝑠
𝐹→˓𝑙

⟨︀
𝑐𝐹

⃒⃒
𝑘𝐹

⟩︀↓ , matches the LHS

of a rule G,
⟨︀
𝑐𝐺

⃒⃒
𝑘𝐺

⟩︀↑ 𝐺→˓𝑙 𝐶𝐺[𝑡]. Further, after unifying with the current

state
⟨︀
𝑐′′

⃒⃒
𝑘′′⟩︀,

⟨︀
𝑐𝐹

⃒⃒
𝑘𝐹

⟩︀
=

⟨︀
𝑐𝐺

⃒⃒
𝑘𝐺

⟩︀
, and 𝑘𝐹 = 𝑘𝐺 can be written 𝑘𝐹 = 𝑘𝐺 =

𝑘 ∘ [𝑥→ rhs]. By Observation B.1.1, we know that rule F was created by an

invocation

sosRhsToPam(𝑠, 𝑘, let [𝑐𝐹 ; 𝑥] in rhs)

and there is hence a rule H created by an invocation of the form

sosRhsToPam(
⟨︀
𝑐𝐹

⃒⃒
𝑘𝐹

⟩︀↓ , 𝑘, rhs)

As rule G was created by an invocation sosRhsToPam(
⟨︀
𝑐𝐺

⃒⃒
𝑘𝐺

⟩︀↑ , 𝑘, rhs), rule

H hence takes the form
⟨︀
𝑐𝐹

⃒⃒
𝑘𝐹

⟩︀↓ 𝐻→˓𝑙 𝐶𝐺[𝑡]. Using rule H completes this case.

Finally, to show the correspondence between the Unfused AM and the normal AM,

we must show that fusing rules does not substantially alter the transition relation.

This is very simple, thanks to the Fusion Property.

Lemma B.1.10. Let 𝑀 be an abstract machine whose transition relation is →𝑀 ,

containing a rule F. Let 𝑀 ′ be 𝑀 with Rule F fused with all possible successors, and

let its transition relation be →𝑀 ′. Then, for any state
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
,
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→𝑀 ′

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀

if and only if
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→𝑀

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀, or

⟨︀
𝑐
⃒⃒
𝐾
⟩︀ 𝐹→𝑀

⟨︀
𝑐′′

⃒⃒
𝐾 ′′⟩︀ 𝐺→𝑀

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ for some

rule 𝐹 ̸= 𝐺.

Proof. By Property 4.3.5.

269

Theorem 4.4.7 (Unfused AM-AM).
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→*

𝑙

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ if and only if

⟨︀
𝑐
⃒⃒
𝐾
⟩︀
−→*

𝑙⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀ by a sequence of rules whose last rule is not fused away.

Proof. Corollary of Lemma B.1.10.

Finally, we state some useful properties which are analogues of Sanity of Phase.

Property B.1.11 (Sanity of Frame). The following properties hold:

1. If
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀, then either 𝐾 = 𝐾 ′ ∘ 𝑓 for some 𝑓 , 𝐾 ′ = 𝐾 ∘ 𝑓 for some

𝑓 , or there are 𝑓 , 𝑓 ′, 𝐾 ′′ such that 𝐾 = 𝐾 ′′ ∘ 𝑓 and 𝐾 ′ = 𝐾 ′′ ∘ 𝑓 ′.

2. If 𝑐 is a nonvalue, and
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→

⟨︀
𝑐′
⃒⃒
𝐾 ′⟩︀, then 𝐾 is contained in 𝐾 ′.

Why Didn’t We Use Bisimulations? A common alternative way of stating re-

sults like Theorems 4.4.5 and 4.4.6 is by giving a stuttering bisimulation between

the PAM and the AM. However, between any two (terminating) transition systems,

without giving additional labels on the states, there always exists a trivial stuttering

bisimulation. The interesting information lies in giving a specific stuttering bisimu-

lation. We decided that dealing with the additional machinery of stuttering bisimu-

lations would add to the background needed to understand the proof, without much

benefit.

B.2 Proofs of Abstract Rewriting Theorems

Lemma 4.5.4 (Generalized Lifting Lemma). Let 𝛽1, 𝛽2 be base abstractions where 𝛽1

is pointwise less than 𝛽2, i.e.: 𝛽1(𝑓)(𝑐) ≺ 𝛽2(𝑓)(𝑐) for all 𝑓, 𝑐. Suppose
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
≺⟨

̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
, and also

⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
̂︁→
𝛽1

⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
by rule F. Then there is a

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
such

that
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
≺

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
and

⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
̂︁→
𝛽2

⟨
̂︀𝑐2
⃒⃒ ̂︁𝐾2

⟩
by rule 𝐹 .

Proof. We show a correspondence between the applications abstract rewriting algo-

rithms for both 𝛽1 and 𝛽2. We know that the LHS of rule 𝐹 matches
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀
with

witness 𝜎; hence, by the Abstract Matching Property, it also matches
⟨
̂︀𝑐1
⃒⃒ ̂︁𝐾1

⟩
with

some witness 𝜎′ ≻ 𝜎. Let the RHS of 𝑓 be rhs𝑝. Then:

270

• If rhs𝑝 = let 𝑐ret = func(𝑐args) in rhs′𝑝, then the concrete rewriting of
⟨︀
𝑐1
⃒⃒
𝐾1

⟩︀

must have picked some 𝑟 ∈ 𝛽1(func)(𝜎(𝑐args)), where 𝑟 matches 𝑐ret with witness

𝜎𝑟. Since 𝛽1 is a base abstraction and ̂︀𝜎(𝑐args) ≻ 𝜎(𝑐args), there is an ̂︀𝑟 ∈
𝛽2(func)(̂︀𝜎(𝑐args)) with ̂︀𝑟 ≻ 𝑟. Then, by the abstract matching property, ̂︀𝑟
matches 𝑐ret with witness ̂︀𝜎𝑟 ≻ 𝜎𝑟. The abstract rewriting algorithm then

proceeds to recursively evaluate rhs𝑝 with some ̂︀𝜎′ and 𝜎′ respectively; by their

definition and the previous argument, we must have ̂︀𝜎′ ≻ 𝜎′.

• If rhs𝑝 =
⟨︀
𝑐′𝑝
⃒⃒
𝐾 ′

𝑝

⟩︀
, then the result is

⟨︀
̂︀𝜎(𝑐′𝑝)

⃒⃒
̂︀𝜎(𝐾 ′

𝑝)
⟩︀
. Since ̂︀𝜎 ≻ 𝜎, we have

⟨︀
̂︀𝜎(𝑐′𝑝)

⃒⃒
̂︀𝜎(𝐾 ′

𝑝)
⟩︀
≻

⟨︀
𝜎(𝑐′𝑝)

⃒⃒
𝜎(𝐾 ′

𝑝)
⟩︀

=
⟨︀
𝑐2
⃒⃒
𝐾2

⟩︀
by the Abstract Matching Prop-

erty, finishing the proof.

Theorem 4.5.7 (Abstract Transition). For 𝑎, 𝑏 ∈ amState, if 𝛼 is an abstraction

with base abstraction 𝛽, and 𝑎→ 𝑏, then either 𝑏 ⊑ 𝛼(𝑎), or ∃𝑔 ∈ amState ⋆ . 𝛼(𝑎) ̂︁→
𝛼

𝑔 ∧ 𝑏 ⊑ 𝑔.

The proof uses the following observation:

Observation B.2.1. The nontermination-cutting relation (▷) satisfies the following

properties:

1. If 𝑎 ≺ 𝑏 and 𝑏 ▷ 𝑐, then 𝑎 ▷ 𝑐.

2. If 𝑎→ 𝑏 and 𝑎 ▷ 𝑐, then 𝑏 ▷ 𝑐.

We now prove the Abstract Transition Theorem:

Proof. Because (≺) is reflexive and transitive, there must be a canonical derivation

of 𝑎 ⊑ 𝛼(𝑎) of one of the following three forms:

• Case (1): 𝑎 ≺ 𝛼(𝑎). Then, by the lifting lemma, there is a 𝑔 with 𝑏 ≺ 𝑔 and

𝛼(𝑎) ̂︁→
𝛽
𝑔.

• Case (2): There are 𝑥1, 𝑥2 such that 𝑎 ≺ 𝑥 ▷ 𝑥2 ⊑ 𝛼(𝑎). Then, by Observation

B.2.1, 𝑎 ▷ 𝑥2, and hence 𝑏 ▷ 𝑥2, and hence 𝑏 ⊑ 𝑥2 ⊑ 𝛼(𝑎).

271

• Case (3): There is an 𝑥1 such that 𝑎 ≺ 𝑥1, and, for all 𝑥2 such that 𝑥1 ̂︁→
𝛽

𝑥2,

𝑥2 ⊑ 𝛼(𝑎). First, by the lifting lemma, there is an 𝑥′
1 with 𝑏 ≺ 𝑥′

1 and 𝑥1 ̂︁→
𝛽
𝑥′
1.

But, by assumption, 𝑥′
1 ⊑ 𝛼(𝑎). Hence, 𝑏 ≺ 𝑥′

1 ⊑ 𝛼(𝑎), so 𝑏 ⊑ 𝛼(𝑎).

B.3 Correctness of Graph Patterns

We first note that, by starting abstract execution on a node whose immediate children

are all non-value variables, this algorithm assumes that the initial state of the program

must contain no value nodes. This is not a real restriction; one can transform any

language to meet this criterion by replacing each value-node 𝑉 (𝑥) in initial program

states with a non-value node 𝑀𝑘𝑉 (𝑥) and adding the rule 𝑀𝑘𝑉 (𝑥) ; 𝑉 (𝑥). So,

pedantically speaking, the graph-patterns produced by the algorithm are not actually

graph patterns of the original language, but rather of this normalized form.

We now build the setting of our proofs. In this develpment, let termVar, amStateVar,

etc be variants of term⋆, amState⋆, etc that may contain free variables as well as ⋆

nodes. We extend the ≺ ordering to include the subsumption ordering, and with the

relation 𝑥mt ≺ ⋆mt for any variable 𝑥, so that 𝑎 ≺ 𝑏 if 𝑎 may be obtained from 𝑏 by

specializing a match type, expanding a star node, or substituting a variable.

As mentioned in Section 4.5.3, we add a few technical conditions to the definition

of an abstraction 𝛼. The first condition prevents an antagonistically-chosen 𝛼 from

doing something substantially different when encountering a more abstract term.

Assumption B.3.1. On terms without variables, 𝛼 must be monotone in the ≺
ordering. As the analogue for terms with variables, if there is a substitution 𝜎 such

that 𝑏 = 𝜎(𝑎), then there must be a substitution 𝜎′ extending 𝜎 such that 𝛼(𝑏) =

𝜎′(𝛼(𝑎)).

The next condition is stronger than we need, but greatly simplifies the discovery

of the correspondence between graph patterns and interpreted-mode graphs. In plain

words, it states that abstractions may not drop stack frames: they may skip over

272

the execution of a subterm entirely, but may not skip over only the latter part of a

computation. All abstractions discussed in this chapter satisfy it.

Definition B.3.2. Define the stack length of a state 𝑠 =
⟨︀
𝑐
⃒⃒
𝐾
⟩︀

as:

• stacklen(
⟨︀
𝑐
⃒⃒
emp

⟩︀
) = 0

• stacklen(
⟨︀
𝑐
⃒⃒
𝐾 ∘ 𝑓

⟩︀
) = 1 + stacklen(

⟨︀
𝑐
⃒⃒
𝐾
⟩︀
)

Assumption B.3.3. For all 𝑎 ∈ amStateVar, we require that

stacklen(𝑎) ≤ stacklen(𝛼(𝑎))

Further, there must be a derivation of 𝑎 ⊑ 𝛼(𝑎) where none of the intervening states

𝑐, as in Definition 4.5.6, satisfy stacklen(𝑐) < stacklen(𝑎).

We now begin the proofs. We need a new version of the Generalized Lifting Lemma

for narrowing. Mimicking the proof, and using the relation between matching and

unification, gives the following:

Lemma B.3.4 (Lifting Lemma (Narrowing)). Let 𝑎 ∈ amState⋆, 𝑏 ∈ amStateVar,

𝑎 ≺ 𝑏, and let 𝛽 be a base abstraction. Suppose 𝑎 ̂︁→
𝛽
𝑎′. Then there exists 𝑏′ such that

𝑏 ̂︁
𝛽
𝑏′ and 𝑎′ ≺ 𝑏′.

We now prove the correspondence between a graph pattern and the relevant sub-

graph of an abstract transition graph. To isolate the relevant subgraphs, we use the

concept of hammocks from graph theory, which are commonly used in the analysis

of control-flow graphs (e.g.: [55]). A hammock of a control-flow graph is a single-

entry single-exit subgraph. We use the modified term weak hammock to refer to a

single-entry multiple-exit subgraph.

Definition B.3.5. Let 𝑁+(𝑛) be the out-neighborhood of 𝑛 in a graph 𝐺. Then the

weak hammock of 𝐺 bounded by entry node 𝑛 and exit node-set 𝒯 is the subgraph of

𝐺 induced by the node set given by the least-fixed-point of 𝑄, where

𝑄(𝑆) = {𝑛} ∪
⋃︁

𝑚∈(𝑆∖𝒯)

𝑁+(𝑚)

273

Our goal now is to, given the abstract transition graph of a program, discover the

fragment that corresponds to the control-flow of a single node. We will then prove

the correspondence between these fragments and the relevant graph pattern.

Definition B.3.6. Let 𝑁 be a non-value node type and 𝛼 an abstraction, and consider

some configuration 𝑆 =
⟨︀
(𝑁(𝑒𝑖), 𝜇)

⃒⃒
𝐾
⟩︀
. Let 𝑇 be the abstract transition graph 𝑇 of

(̂︁→
𝛼

) starting from 𝑆. Let 𝐸 = {𝑡 ∈ 𝑇 |𝑡 ̸= 𝑆 ∧ stacklen(𝑡) ≤ stacklen(𝑆)}. Then the

CFG fragment for 𝑆 is defined inductively as follows:

• If none of the 𝑒𝑖 are non-values, then the CFG fragment for 𝑆 is the weak

hammock of 𝑇 bounded by 𝑆 and 𝐸.

• Otherwise, the CFG fragment for 𝑆 is the weak hammock of 𝑇 bounded by 𝑆

and 𝐸, minus the edges of the CFG fragments for each non-value 𝑒𝑖, minus also

the nodes which then become unreachable from both 𝑆 and 𝐸.

We say there is a transitive edge from the start state of each sub-CFG-fragment

to its end states. By default when discussing the edges of a CFG fragment, we do not

include the transitive edges.

Lemma B.3.7. Let ̂︀𝑒 ≺ ⋆NonVal. Then, for any ̂︀𝑠, ̂︀𝐾,
⟨

(̂︀𝑒, ̂︀𝑠)
⃒⃒ ̂︀𝐾

⟩
▷
⟨

(⋆Val,⊤𝑙)
⃒⃒ ̂︀𝐾

⟩
.

Proof. Consider
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
∈ 𝛾(

⟨
(̂︀𝑒, ̂︀𝑠)

⃒⃒ ̂︀𝐾
⟩

). By the Sanity of Frame properties, for any

derivation
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→* ⟨︀

𝑐′
⃒⃒
𝐾 ′⟩︀, either 𝐾 ′ contains 𝐾 or there is a subderivation of

the form
⟨︀
𝑐
⃒⃒
𝐾
⟩︀
→* ⟨︀𝑐′

⃒⃒
𝐾
⟩︀
.

Theorem B.3.8 (Correctness of Graph Patterns). Let 𝑁 be a non-value node type,

and 𝑃 be its graph pattern under (̂︁→
𝛼

). For an abstraction 𝛼, consider the abstract

transition graph 𝑇 of (̂︁→
𝛼

) from some start state 𝑆 =
⟨︀
(𝑁(𝑒𝑖), 𝜇)

⃒⃒
𝐾
⟩︀
. Let 𝐹 be

the CFG fragment for 𝑆 in 𝑇 . Let 𝜎 be the substitution resulting from unifying the

start state of 𝑃 with 𝑆. Then, for every edge 𝑎 ̂︁→
𝛼

𝑏 in 𝐹 , there are 𝑎′, 𝑏′ ∈ 𝑃 with

𝑎 ≺ 𝜎(𝑎′), 𝑏 ≺ 𝜎(𝑏′) such that 𝑎′ ̂︁→
𝛼

𝑏′ is in 𝑃 .

Proof. For any 𝑎 ∈ 𝑉 (𝐹), 𝑎′ ∈ 𝑉 (𝑃) with 𝑎 ≺ 𝜎(𝑎′), this is true for all edges reachable

from 𝑎 by the Lifting Lemma and by Assumption B.3.1. We hence must show that

274

every node in 𝐹 is reachable from some node 𝑥 satisfying ∃𝑥′ ∈ 𝑃, 𝑥 ≺ 𝜎(𝑥′). But

note that every node in 𝐹 is reachable from either 𝑆 or by the exit nodes of the CFG

fragment for one of the 𝑒𝑖. By construction, 𝑆 is equal to the start state of 𝑃 ′. It

remains to show this condition for the exit nodes of the CFG fragments for the 𝑒𝑖,

i.e.: the nodes which are the target of a transitive edge.

Pick such a node 𝑥 =
⟨︀
𝑐𝑥

⃒⃒
𝐾𝑥

⟩︀
, and note that, by construction and by Sanity

of Frame, 𝑐𝑥 must be a value. Then, using the Sanity of Frame properties and

Assumption B.3.3, the source of the corresponding transitive edge(s) must have the

form
⟨︀
(𝑒𝑖, 𝜇)

⃒⃒
𝐾𝑥

⟩︀
. By induction, we must have 𝑒′𝑖, 𝜇

′, 𝐾 ′
𝑥 with 𝑒𝑖 ≺ 𝜎(𝑒′𝑖) and 𝐾𝑥 ≺

𝜎(𝐾 ′
𝑥) with

⟨︀
(𝑒′𝑖, 𝜇

′)
⃒⃒
𝐾 ′

𝑥

⟩︀
∈ 𝑃 . This node has a transitive edge to

⟨︀
(⋆Val,⊤)

⃒⃒
𝐾 ′

𝑥

⟩︀
in

𝑃 , which satisfies
⟨︀
𝑐𝑥

⃒⃒
𝐾𝑥

⟩︀
≺ 𝜎(

⟨︀
(⋆Val,⊤)

⃒⃒
𝐾 ′

𝑥

⟩︀
), finishing the proof.

One advantage of the compiled-mode is that it’s done once per language/abstrac-

tion pair, so any corner case that causes an infinite-loop would be exposed up front.

Yet interpreted-mode CFG-generation is always more precise, albeit slower and less

predictable. Can we at least guarantee that interpreted-mode generation will termi-

nate, i.e.: result in a finite graph?

It’s easy to construct examples where interpreted-mode CFG-generation does

not terminate (e.g.: the identity abstraction, and any non-terminating program), so

there’s no universal termination theorem. But here’s a cool result: if compiled-mode

generation terminates, then so does interpreted-mode. Intuitively, this is so because

graph-pattern generation does the kind of case analysis that’s needed to prove termi-

nation of interpreted-mode CFG-generation for a single language/abstraction pair

Theorem B.3.9 (Finiteness). Consider a node type 𝑁 , its graph pattern 𝑃 , any

state of the form 𝑆 =
⟨︀
(𝑁(𝑒𝑖), 𝜇)

⃒⃒
𝐾
⟩︀
, and the CFG fragment 𝐹 for 𝑆 in the abstract

transition graph of 𝑆. If 𝑃 is finite, then so is 𝐹 .

Proof. Assume 𝑃 is finite, and suppose 𝐹 is infinite. By König’s Lemma, either

𝐹 contains a node of infinite outdegree, or an infinite path. However, because all

semantic functions func have the property that func(𝑐) is finite for all 𝑐, the only

possibility is for 𝐹 to contain an infinite path.

275

Theorem B.3.8 establishes a relation 𝑀 between 𝐹 and 𝑃 . Since 𝑃 is finite, this

implies that there is a path 𝑓1 → 𝑓2 → · · · → 𝑓𝑛 in 𝐹 where each 𝑓𝑖 is distinct, where

the corresponding path in 𝑃 𝑝1 → · · · → 𝑝𝑛−1 → 𝑝1 is a cycle, where each→ is either

a transitive edge, (̂︁→
𝛼

) (in 𝐹), or (̂︁
𝛼

) (in 𝑃).

However, by Theorem B.3.8, there is 𝜎 such that 𝜎(𝑝1) = 𝑓1, and there is 𝜎′

extending 𝜎 such that 𝜎′(𝑝1) = 𝑓𝑛. Since 𝜎(𝑝1) must be ground, that means 𝜎(𝑝1) =

𝜎′(𝑝1), and hence 𝑓1 = 𝑓𝑛, contradicting the assumption. Hence, 𝐹 must be finite.

As a corollary, we obtain our automated proof of termination for the interpreted-

mode CFG generators.

Theorem 4.6.1. Let 𝑎 ∈ amState𝑙 and 𝛼 be a machine abstraction. If the graph

patterns under abstraction 𝛼 for all nodes in 𝑎 are finite, then only finitely many

states are reachable from 𝑎 under the ̂︁→
𝛼

relation.

276

	Introduction
	Fundamental Challenges, Scientific Solutions
	The Cubix Framework: One Tool, Many Languages (like Yogo)
	ECTAs: Program Synthesis with Dependencies
	Mandate: A CFG Generator Generator
	Overview and Works Covered

	Cubix: One Tool, Many Languages
	The Problem of Language-Parametric Tools
	Why IRs Don't Solve Multi-Language Transformation
	Incremental Parametric Syntax

	Overview
	An Elementary Hoisting Transformation
	Modularizing C

	Core Ideas
	Background: Data Types à la Carte
	Incremental Parametric Syntax
	Sort Injections
	Modularizing a Syntax Definition

	Implementation
	Languages
	Transformation Support
	Example: Implementing the Elementary Hoisting Transformation
	Choices of Target and Implementation Languages

	Evaluation
	A Realistic Whole-Program Refactoring
	Benchmark Transformations
	Correctness

	Readability Study
	Phase 1: Constructing the RWUS Suite
	Phase 2: Obtaining Human-Written Transformations
	Preparing the Samples
	Phase 3: Comparing Human and Machine-Written Transformations
	Quality Control
	Results
	Threats to Validity

	CFG System
	The Need for Advanced CFG Manipulation
	CFG Generation: Not So Easy
	Language-Modular CFG Generation
	CFG-Based Program Transformation
	Implementation

	Application: Semantic Code Search
	A Run Through Yogo
	Implementation
	Evaluation

	Conclusion

	ECTAs: Compact Spaces of Coupled Terms
	Overview
	Basic Formalism
	Preliminaries
	Equality-Constrained Tree Automata
	Static Reduction

	Optimized Formalism and Implementation
	Pseudo-Tree ECTAs and the Globally-Unique Recursion Restriction
	ECTA Operations: Union, Intersection, and Reduction
	Flexible, Fast Enumeration

	Applications
	Hoogle+
	Database Optimization

	Mandate: Deriving Tools from Semantics
	Why Generate CFGs?
	Control-Flow Graphs for IMP
	Getting Control of the Semantics
	Run Abstract Program, Get CFG
	A Syntax-Directed CFG-Generator

	From Operational Semantics to Abstract Machines
	Terms and Languages
	Straightened Operational Semantics
	The Phased Abstract Machine
	Abstract Machines
	Splitting the SOS
	Cutting PAM

	Correctness
	Control-flow Graphs as Abstractions
	Abstract Terms, Abstract Matching
	Abstract Rewriting
	Machine Abstractions
	Projections
	Termination

	Syntax-Directed CFG Generators
	An Automated Termination-Prover

	Deriving Control from a Mandate
	Control-Flow Graphs for Tiger and MITScript

	Conclusion

	Related Work
	Modular Language Tooling
	Control-Flow
	Tools from Semantics

	Conclusion
	The ADT Modularization Transformation
	Proofs for Mandate
	Correctness of SOS-AM Translation
	SOS-PAM Correspondence
	Invertibility
	PAM-AM Correspondence

	Proofs of Abstract Rewriting Theorems
	Correctness of Graph Patterns

