
Incremental Parametric Syntax for Multi-Language
Transformation

James Koppel
MIT

Cambridge, MA, USA
jkoppel@mit.edu

Armando Solar-Lezama
MIT

Cambridge, MA, USA
asolar@csail.mit.edu

Abstract
We present a new approach for building source-to-source
transformations that can run on multiple programming lan-
guages, based on a new way of representing programs called
incremental parametric syntax. We implement this ap-
proach in our Cubix system, and construct incremental para-
metric syntaxes for C, Java, JavaScript, Lua, and Python,
demonstrating three multi-language program transforma-
tions that can run on all of them. Our evaluation shows that
(1) once a transformation is written, relatively little work
is required to configure it for a new language (2) transfor-
mations built this way output readable code which preserve
the structure of the original, according to participants in our
human study, and (3) despite dealing with many languages,
our transformations can still handle language corner-cases,
and pass 90% of compiler test suites.

CCSConcepts • Software and its engineering→Trans-
lator writing systems and compiler generators; Syntax;
General programming languages;

Keywords abstract syntax trees, program transformation

ACM Reference Format:
James Koppel and Armando Solar-Lezama. 2017. Incremental Para-
metric Syntax for Multi-Language Transformation. In Proceedings
of 2017 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages, and Applications: Software for Humanity
(SPLASH Companion’17). ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3135932.3135940

1 Introduction
As the scale of software grows, developers will increasingly
depend on program transformation tools to help maintain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5514-8/17/10. . . $15.00
https://doi.org/10.1145/3135932.3135940

software. Programmers use transformation tools to do ev-
erything from small-scale refactoring to modernizing entire
legacy applications. Most tools are wedded to one language
(or even one compiler), and often require hundreds of thou-
sands of lines of code to implement. Given that developers
use hundreds of languages, the value of these tools would be
significantly enhanced if they could be easily made to work
across multiple languages.
Many program analysis frameworks have addressed the

multi-language problem by reducing multiple languages into
a common intermediate representation. This approach fails
when the goal is program transformation, because translating
into an intermediate representation necessarily destroys in-
formation. An alternative to reduction is to define languages
in a modular way that allows representations of different lan-
guages to share common structures. In the last few decades,
researchers have proposed a number of techniques to deal
with different languages modularly, including work on mod-
ular semantics [2], modular interpreters [4], and modular
syntax [1]. The limitation is that using any of these tech-
niques requires defining an entire language in a specialized
manner, differently from existing tools. Hence, so far they
have only been applied to small languages such as DSLs.
We present incremental parametric syntax, which al-

lows implementers to define languages modularly on a much
greater scale than previously, and hence write source-to-
source transformations that run on multiple real languages.
We implement this approach in ourCubix system, and demon-
strate it with several characteristic program transformations
that each can run on several of C, Java, JavaScript, Lua, and
Python. We show that developers can define these transfor-
mations in a few lines of code, and that the output of the tool
does not suffer from the readability problems that plague
IR-based approaches. In fact, we conducted a human study
that showed that the output of our tool is no less readable
than code that was transformed by hand.

We give a brief overview of this work in the remainder of
this paper. More details are available in the full paper [3].

2 Approach
2.1 Incremental Parametric Syntax
Our approach instead is based on the idea of incremental
parametric syntax. Conceptually, one can think of our ap-
proach as offering the following functions:

53

https://doi.org/10.1145/3135932.3135940
https://doi.org/10.1145/3135932.3135940
https://doi.org/10.1145/3135932.3135940

SPLASH Companion’17, October 22–27, 2017, Vancouver, Canada James Koppel and Armando Solar-Lezama

1 data Arith =
2 Add Atom Atom
3 data Atom
4 = Var String
5 | Const Lit
6 data Lit
7 = Lit Int

1 data ArithL ; data AtomL; data LitL
2 data Arith t l where
3 Add :: t AtomL→t AtomL
4 → Arith t ArithL
5 data Atom t l where
6 Var :: String → Atom t AtomL
7 Const :: t LitL → Atom t AtomL
8 data Lit (t :: ∗ → ∗) l where
9 Lit :: Int → Lit t LitL

Figure 1
decomposeJ :: Java→IR ▷◁RemJ , decomposeC :: C→IR ▷◁RemC
transform :: ∀x . IR ▷◁ x → IR ▷◁ x
recomposeJ :: IR ▷◁RemJ →Java, recomposeC :: IR ▷◁RemC →C

This decomposes a language into generic and language-
specific fragments. A transformation can then be defined
only on the generic fragments. This allows the transfor-
mation to run on any language that contains the generic,
while still preserving information, and leaving the language-
specific parts untouched. This approach is incremental, in
that a programmer can translate language-specific fragments
of a language into generic ones in a piecewise fashion.
The composition X ▷◁ Y is done by the “data types à la

carte” approach [5]. To that we add sort injections, which
solve the problem that, when two languages have similar
nodes such as assignment nodes, they may interact differ-
ently with the rest of the syntax. A sort injection is a node or
sequence of nodes which allows terms of one sort to be used
at another sort. For instance, they allow one to specify that a
generic assignment may be used where a language-specific
statement is expected, and to independently specify what
terms may appear as the LHS and RHS of an assignment. Us-
ing these sort injections, Cubix can generate code for a new
representation of the language which is isomorphic to the
original one, and which allows intermixing language-specific
and generic fragments.

2.2 Automatically Generating a Modularized
Representation

Generating an incremental parametric syntax for a language
requires that the language first be decomposed into frag-
ments. The comptrans tool can automatically generate such a
decomposition from a pre-existing third-party syntax def-
inition. It takes as input a syntax definition as a system of
mutually recursive algebraic datatypes, and outputs code for
a syntax definition as a compositional data type [1] isomor-
phic to the original. An example is given in Figure 1. The
LHS gives a representation of an abstract syntax as an ADT.
comptrans transforms this input into the GADTs on the right.

3 Results
We have implemented our approach in the Cubix system.
Cubix is organized as a collection of libraries which users
can use to assist in building incremental parametric syntaxes
and multi-language transformations. We built support for C,

Java, JavaScript, Lua, and Python, and built three example
program transformations: hoisting, test-coverage instrumen-
tation, and conversion to three-address code (TAC).
We ran our transformations on language test suites for

each of the 5 languages, and checked whether they still
passed. Our results are promising, showing pass rates of
98.2%, 97.8%, and 95.8% for the Hoist, Testcov, and TAC
transformations respectively. One caveat is that, for many
tests, performing the identity transformation, which refor-
mats the code, would cause the test to fail. This could happen
both because of bugs in the third-party pretty-printers, or
because the test is self-referential. These numbers exclude
tests which fail the identity transformation.

3.1 Readability: Human Study
We ran a study to evaluate the readability of our transforma-
tions’ output. First, we ask a set of human contributors to
transform programs by hand. We then give a separate set of
human judges from Mechanical Turk these programs, along-
side the corresponding automatically transformed programs,
and ask them to rate them both on correctness and quality.
We automatically reformat the human-written code before
presenting them for comparison.
For the set of target programs in this study, we created

a benchmark set called the RWUS suite (Real World, Un-
changed Semantics), consisting of 10 functions of between
5 and 50 lines randomly selected from top Github projects.
For each function, we created stubs so that it could be tested
standalone, and created a thorough set of tests (7000 lines
total) that could detect any change to the program semantics.
The Mechanical Turk judges were asked to rate pairs of

programs on a 1-5 scale. The hypothesis for each language
was that the automatically-transformed programs would
receive an average rating of at most 1 less than the human-
transformed. This is a problem in statistics known as non-
inferiority testing. We tested this with a paired t-test, obtain-
ing that the hypothesis held for each language with p < 10−9.

Acknowledgments
This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. 1122374.

References
[1] Patrick Bahr and Tom Hvitved. 2011. Compositional Data Types. In

ICFP.
[2] Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C. d.

S. Oliveira. 2013. Modular Monadic Meta-Theory. In ICFP.
[3] J. Koppel and A. Solar-Lezama. 2017. Incremental Parametric Syn-

tax for Multi-Language Transformation. ArXiv e-prints (July 2017).
arXiv:cs.PL/1707.04600

[4] Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transform-
ers and Modular Interpreters. In POPL.

[5] Wouter Swierstra. 2008. Data types à la Carte. Journal of functional
programming 18, 04 (2008), 423–436.

54

http://arxiv.org/abs/cs.PL/1707.04600

	Abstract
	1 Introduction
	2 Approach
	2.1 Incremental Parametric Syntax
	2.2 Automatically Generating a Modularized Representation

	3 Results
	3.1 Readability: Human Study

	Acknowledgments
	References

