There’s only one good ﬁ'qy
to implement finite-state machines

’ﬂﬂﬂ"_?._
:7/"’;’/]”
7}}/_,/?'

Tim Cooper

I often read about finite-state ma-
chines and how to implement
them. I can’t help but violently dis-
agree with what some people say
about FSMs—for example, to hear
someone suggest an array of func-
tion pointers (of all things) or say
that the gofo method compromises
good structured programming,
After seeing my example code and
benchmarks, maybe you’ll be con-
vinced that there is only one way
to implement FSMs that wins on
both counts of efficiency and good
programming,

Overview of FSMs

For the uninitiated, an FSM is an
algorithm that is often used to pro-
cess some kind of incoming data. It
can be in any one of many states,
and the way it processes the input
depends on its state. For example, a
C compiler that uses an FSM to
process a C program will process a
word differently if it is inside a
comment or string constant.

FSMs are frequently used for
text processing because they are
good for implementing syntax dia-
grams or rules. The Turing ma-
chine is built on the concept of an
FSM. Many other things can be
considered FSMs: a word processor

that jumps between Opening, Editing,
Printing, and Special Functions modes
following a strict set of rules but
not necessarily a particular hierar-
chy or cycle.

FSMs are often visualized with
the help of a graph diagram. The
parser implemented in Listing 1
processes C programs according to
the FSM shown in Figure 1.

After learning about FSMs, I de-
signed an extension to C, a new

.
.

keyword that would allow easy and
efficient implementation of FSMs.
To my surprise, I discovered 1
could implement this keyword my-
self using one simple #define state-
ment: #define state(s) s: ch = foete
(text); keep##s.

¢h is a global char variable, and
text is the FILE * for the input
text. (If you want to implement
something other than a text proces-
sor, it is easy to modify this macro.)

FIGURE 1.

Finite-state machine

----------------------------------------------------------------------------------------------------------------



Goto? Yes, goto!

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.

e

LISTING 1. (Continued on following page)

include (stdio.h >

include (ctype.

h}

#define state(s) s: ch = fgetc(prog); keepwss

#define or | |

typedef enum {identifier, number operator| TokenType;

FILE * prog;

char ch, id[32]:

int idx;

/* Identifier buffer and buffer index */

void ProcessToken (TokenType t):
void parse(void);

main(int argc,
|

1
Cctype+1)['] = 1;

parse ():

char * argv[])

void parse(void)
|

state(OUTSIDE):if (isspace (ch))

goto OUTSIDE;
if (isalpha (ch))
|

goto IDENTIFIER;
|
|
else if (isdigit (ch))
|

1d[0] = ch;
idx = 1;
goto NUMBER:

else switch (ch)
|
case '#': goto PREPROCESSOR:
case '/': goto AWAIT_ASTERISK:
case "\ ": goto CHAR_CONSTANT:
case \"': goto STRING_CONSTANT:
case "\n': goto OUTSIDE;
case EOF: goto END_OF-FILE;
default:  id[0] = ch;
idx = 1;
ProcessToken (operator);
goto OUTSIDE;

state (IDENTIFIER):

if (isalnum (ch))

|
id[idx++] = ch;
goto IDENTIFIER;
|
|

64  cowputen LANGUAGE m MAY 1991

/* This is an efficient way to get */
if (prog = fopen (argv[1], "r")) /* isalpha to recognize underscores */
/* as alphas (Microsoft C). */

/* Starting state */

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
-

.
L N R R R

Note the double hatch symbol —it
is the ANSI operator for merging.
It concatenates 4egp onto the front
of whatever argument you give it,
thereby constructing a single
identifier.

How to use the macro

The macro is used to mark the be-
ginning of each state. It is used in
the form: state (STATE_NAME):
...code.... To write an FSM, you be-
gin with the statement: sfate
(STATE_NAME): ...¢tc.... The
code follows the colon.

To transfer to another state, just
write goto STATE__NAME and
you will go to that new state. The
next character will be read auto-
matically. To exit, you need to cre-
ate an exit state that is the last
state: state (EXIT):. If this is the
last state, processing will continue
on to the code following the FSM.

Of course, there are alternative
ways to exit, such as setting your
own label at the end of the code
(this avoids the problem of EXIT
being reached on an EOF, then
trying to read the next character)
or using refurn statements to return
from the middle of the FSM (if the
error state is entered).

Sometimes the FSMs are not
completely straightforward, and
you find yourself in a situation
where you need to jump to another
state without gobbling up another
character. For example, you have
to see the next character before you
know that you know whether a
slash (/) is an comment delimiter
Or an operator.

One popular but inefficient
method has been to use unget state-
ments to push the character back
onto the stream. This macro
method avoids this by using the
keepSTATE_NAME label. This
label is set in every state by the
macro, just after the read character
statement. (The name comes from
the macro and the colon comes
from the code.) To jump to another



.

.-oooo-q-.--..-.ooooo..-.-.-..-oo..-q--.aa-.ooo--.---a-.ooo.-...-q-...-a-.ooo.-..---.-ooo-cooo-q--.-.--ooo..-..--..-ooonooo..-.---c

state in this way, simply write: gofo
keepSTATE_NAME: and you will
transfer to the new state without
reading the next character. (You
keep the current character.)

How the macro works

It is quite easy to understand how
this macro works. The s: statement
sets up a label with the name of the
macro argument. The next state-
ment reads a character from text
(using the function version) to do it.
The final part is used to set the
keepSTATE__NAME label. The
colon is omitted because for aes-
thetic purposes I prefer to include
it in the code. (It then resembles a
swifch statement.)

Comparing other methods

It may seem funny to claim a gofe
method makes for good structured
programming. Here, the gotos are
being used to move around an
FSM, not to create spaghetti code.
Their use is strictly proscribed by
the FSM’s specification. FSMs are
typically envisaged as a network of
states or a syntax diagram; they
cannot generally be arranged into a
linear flow or hierarchy. The tradi-
tional branching and looping con-
structs are inconvenient and the
goto statement is completely
natural.

I don’t believe the gofo statement
could be more efficient. The switch
method involves, for each new
character, a jump to the correct
case statement, the code, assign-
ment of the new state number, a
break to get to the bottom of the
switch, and a third jump back to the
top of the loop. The macro method
accomplishes all this with a single
jump.

I tested my method against the
switch method and found it to be
about 1.7 times quicker. (I tested it
on pure code that did nothing but
move around the FSM and worked
out of memory.) It was also more
compact.

R R N NN

...q--.-aa-.o....--..-ooo-.-.---.-ooo-o..---..o.-uo..-.-...a.ooo..-..--..-ooo-oo..----.-.ooooo-..---...a-co...qq--..-..oooo

Listing 1 illustrates this method
using a program that processes C
files. Although it is intended as an
example, it is tight and readable

code and could easily be adapted to
any use. It is the core of a program
I recently wrote that draws a tree
of function calls, an index, and a

LISTING 1. (Continued on following page)

else
|

goto keepOUTSIDE;

state (NUMBER):if (isalnum (ch))
|

|
id[idx++] = ch;
goto NUMBER;

|

|
else
|
|
ProcessToken (number);
goto keepOUTSIDE:
|

state (CHAR_CONSTANT):
if (ch="V")
goto OUTSIDE;
else if (ch == "\\')
fgetc(prog);
goto CHAR_CONSTANT;

state (STRING_CONSTANT):
if (ch =="\"")
goto OUTSIDE;
else if (ch == "\\)
fgetc(prog);
goto STRING_CONSTANT;

state (AWAIT_ASTERISK):
if (ch == *)
goto REMARK;
else
|

|
id[idx=0] = '/';

goto keepOUTSIDE;
|

state (REMARK):if (ch == "*)
goto AWAIT_SLASH;
else goto REMARK;

state (AWAIT_SLASH):
if (ch = "/)
goto OUTSIDE;
else goto REMARK;

ProcessToken (identifier);

ProcessToken (operator);

. .
e R I R R R N I R ] P N I I A R

ssssssELEsssEERsesEEEER B

RS et e RS s T B e A PR RS e e e R T R R e e R e R R R R R A R E R R R R R R R R R R e B B e e e

.
.
.
.
.

67



sssszssssEs

D e e T T T T T T T

boxed style of printout.

The program uses an FSM to ex-
amine a C program. All preproces-
sor statements, remarks, and white-
space characters are stripped out.
All character and string constants
are also left unprocessed. All iden-
tifiers are found and sent to Process-

ssasaaan

Token() with a parameter denoting
that they are identifiers. All nu-
merical constants are similarly pro-
cessed, and everything else is sent
as single characters with the pa-
rameter labeling them operators.
(The FSM in Figure 1 is a simplifi-
cation and does not deal with the

LISTING 1. (Continued from preceding page)

state (PREPROCESSOR):
if (ch == ")
goto OUTSIDE:
else if (ch == "\\)
fgetc(prog):
goto PREPROCESSOR:

state (ENO_DF_FILE): return;
|

void ProcessToken (TokenType t)
‘static line=0;
switch (t)

case identifier:id[idx] = "\0';

break:
case number:  id[idx] = "\0':
break ;

break;

|
putchar (\n');

if (++line == 23)

Igetch ();

line = 0;

printf ("identifier: %s".id):

printf ("numeric constant- %s”. id):

case identifier:printf ("operator: #c’ 1a[3]):

68 compuTeR LANGUAGE m MaY 1991

R I I R I Y

R R T T T R

“operator states” of C.) The
ProcessToken(') function simply
prints the token and its type.

Using parse()

Often you will want the main pro-
gram to call parse() each time it
wants a token, rather than parse()
calling a subfunction each time it
finds a token. How do you do this?

Easily. Replace every Process-
Token(x) with return(x) and give
the FSM function the correspond-
ing return type. (This exploits the
fact that after processing each to-
ken we want to return to the same
state OUTSIDE.)

You may want parse() to return
after every character read. The goto
method effectively uses the pro-
gram counter as the state variable
(to remember the current state), so
it cannot be used in this case. You
must resort to the switeh method.

More FSM tricks

FSMs are commonly used to parse
languages with regard to a speci-
fied language grammar. The tech-
nique to do so is beyond the scope
of this article, but you might want
to reference Jack Crenshaw’s “The
Nuts & Bolts of Compiler Con-
struction” (COMPUTER L AN-
GUAGE, Mar. 1989) or a book on
compiler design, such as Fischer
and LeBlanc’s Crafting a Compiler
with C (Redwood City, Calif.: Ben-
jamin/Cummings, 1991). FSMs are
very powerful and can be applied
to any programming problem. I
hope I have shown how easy FSMs
are to use. I also hope I have con-
verted all the switch method and
procedure table users to good
structured programming methods
using gofo. W

Tim Cooper is a cognitive science stu-
dent at Sydney University in Australia,
His company is called Esprit de E Soft-
ware Design.

Artwork: Jonathan Schreider
: g

B BB e H e e e S e e e S e S eSS E RS S SN SN S S E N EE S S SN A RS E SRS RSN S S R RS E S SR RS S S S eSS SN EE S SR EE R T RSN N BTSSR NS S S SRS E NS E SRS S S S S EEe e

,/
%
|



