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Many problem domains, including program synthesis and rewrite-based optimization, require searching

astronomically large spaces of programs. Existing approaches often rely on building specialized data structuresÐ

version-space algebras, finite tree automata, or e-graphsÐto compactly represent such spaces. At their core,

all these data structures exploit independence of subterms; as a result, they cannot efficiently represent more

complex program spaces, where the choices of subterms are entangled.

We introduce equality-constrained tree automata (ECTAs), a new data structure, designed to compactly

represent large spaces of programs with entangled subterms. We present efficient algorithms for extracting

programs from ECTAs, implemented in a performant Haskell library, ecta. Using the ecta library, we construct

Hectare, a type-driven program synthesizer for Haskell. Hectare significantly outperforms a state-of-the-art

synthesizer Hoogle+Ðproviding an average speedup of 8×Ðdespite its implementation being an order of

magnitude smaller.
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1 INTRODUCTION

From program synthesis to theorem proving and compiler optimizations, a range of problem do-
mains make use of data structures that compactly represent large spaces of terms. In program
synthesis, the most well-known example is version space algebras (VSAs) [Lau et al. 2003; Polo-
zov and Gulwani 2015], the data structure behind the successful spreadsheet-by-example tool
FlashFill [Gulwani 2011]. Although there may be over 10100 programs matching an input/output
example, FlashFill is able to represent all of them as a compact VSA, efficiently run functions over
every program in the space, and then extract the best concrete solution.
To illustrate the idea behind VSAs, consider the space of nine terms T = {f (t1) + f (t2)} where

t1, t2 ∈ {a, b, c}. Fig. 1a shows a VSA that represents this space. In a VSA a union node, marked
with ∪, represents a union of all its children, while a join node, marked with ▷◁, applies a function
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Fig. 1. Representations of T = {f (t1) + f (t2)} andU = {f (t ) + f (t )}, where t , t1, t2 ∈ {a, b, c}.

symbol to every combination of terms represented by its children. You can see how, by exploiting
the shared top-level structure of the terms in T , this VSA is able to compactly represent nine terms,
each of size five, using only six nodes.

Another data structure that exploits sharing in a similar way is e-graphs, which enjoy a wide range
of applications, including theorem proving [Detlefs et al. 2005], rewrite-based optimization [Tate
et al. 2009], domain-specific synthesis [Nandi et al. 2020, 2021], and semantic code search [Premtoon
et al. 2020]. Both VSAs and e-graphs are now known [Koppel 2021; Pollock and Haan 2021] to be
equivalent to special cases of finite tree automata (FTAs), which have independently experienced a
surge of interest in recent years [Adams and Might 2017; Wang et al. 2017, 2018]. Fig. 1b shows an
FTA that represents the same term space as the VSA in Fig. 1a. An FTA consists of states (circles)
and transitions (rectangles), with each transition connecting zero or more states to a single state.
Intuitively, FTA transitions correspond to VSA’s join nodes, and FTA states correspond to VSA’s
union nodes (although in a VSA, union nodes with a single child are omitted). Importantly, all three
data structures1 thrive on spaces where terms share some top-level structure, while their divergent
sub-terms can be chosen independently of each other.

Challenge: Dependent Joins. Consider now the term spaceU = {f (t ) + f (t )}, where t ∈ {a, b, c},
that is, a sub-space of T where both arguments to f must be the same term. Such łentangledž term
spaces arise naturally in many domains. For example, in term rewriting or logic programming, we
might want to represent the subset of T that matches the non-linear pattern X + X . Similarly, in
type-driven API search [Gissurarson 2018; Mitchell 2004], we might want to represent the space of
all types of library functions that unify with a given query type, such as List α → List α .
Existing data structures are incapable of fully exploiting shared structure in such entangled

spaces. Fig. 1c shows a VSA representing U : here, the node +▷◁ cannot be reused because VSA
joins are independent, whereas our example requires a dependency between the two children of +.
This limitation is well-known: for example, the seminal work on VSAs [Lau et al. 2003] notes that
łefficient representation of non-independent joins remains an item for future work.ž

Solution: ECTA. To address this limitation, we propose a new data structure we dub equality-

constrained tree automata (ECTAs). ECTAs are tree automata whose transitions can be annotated
with equality constraints.2 For example, Fig. 1d shows an ECTA that represents the term spaceU . It

1We omit e-graphs from Fig. 1 for space reasons, but also because e-graphs are typically used to represent congruence

relations rather than arbitrary sets of terms, which makes them less relevant to our setting, as we discuss in ğ9.
2This might remind some readers of Dauchet’s reduction automata; we postpone a detailed comparison to related work (ğ9).
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is identical to the FTA in Fig. 1b save for the constraint 0.0 = 1.0 on its + transition. This constraint
restricts the set of terms accepted by the automaton to those where the sub-term at path 0.0 (the
first child of the first child of +) equals the sub-term at path 1.0 (the first child of the second child
of +). The constraint enables this ECTA to represent a dependent join while still fully exploiting
shared structure, unlike the VSA in Fig. 1c.

Challenge: Enumeration. Being able to represent a term space is not particularly useful unless
we also can efficiently extract a concrete inhabitant of this spaceÐor, more generally, enumerate

some number of its inhabitants. Unsurprisingly, equality constraints make enumeration harder,
since the terms must now comply with those constraints (in fact, as we demonstrate in ğ7.1,
extracting a term for an ECTA is at least as hard as SAT solving). A naïve fix is to filter out spurious
(constraint-violating) terms after the fact, but such łrejection samplingž can be extremely inefficient.

Solution: Dynamic and Static Reduction. Our first insight for how to speed up enumeration is
inspired by constraint-based type inference. Instead of making an eager choice at a constrained
state, such as q1 in Fig. 1d, our enumeration technique postpones this choice, instead introducing
a łunification variablež V1 to stand for the chosen term. This variable gets reused the second
time q1 is visited. At the end, V1 is reified into a concrete term, thereby making a simultaneous
choice at the two constrained states, which is guaranteed by construction to satisfy all equality
constraints. We dub this mechanism dynamic reduction, where łdynamicž refers to operating during
the enumeration process. As we illustrate in ğ2, dynamic reduction becomes more involved when
equality constraints relate different states: in that case the term space associated with a unification
variable gets refined during enumeration.

Our second insight is that enumeration can often be made even more efficient by transforming
the ECTA staticallyÐthat is, before the enumeration startsÐso that some of its constraints are
łfoldedž into the structure of the underlying FTA. We will present examples in ğ2 of using static
reduction to łprunež away states that cannot be part of any term that satisfies the constraints.

Contributions. In summary, this paper makes the following contributions:

(1) We introduce the ECTA data structure (ğ3), which supports compact representation of program
spaces with dependent joins, as well as efficient enumeration (ğ4) via static and dynamic

reduction. We first formalize the simpler acyclic ECTAs, and then show how to add cycles in
order to support infinite term spaces (ğ5).

(2) We develop ECTA encodings for two diverse domains: Boolean satisfiability and type-driven
program synthesis (ğ7). These encodings illustrate that ECTAs are expressive and versatile,
and that ECTA enumeration can effectively be used as a general-purpose constraint solver.

(3) We implement the data structure and its operations in a performant Haskell library, ecta.

We evaluate the ecta library on the domain of type-driven program synthesis (ğ8). The experi-
ments show that our ECTA-based synthesizerHectare significantly outperforms its state-of-the-art
competitor Hoogle+ [Guo et al. 2020], despite our implementation being only a tenth of the size.
Specifically, Hectare is able to solve 88% of synthesis problems in the combined benchmark suite
compared to only 64% by Hoogle+, and on commonly solved benchmarks Hectare is 8× faster on
average. Further, our evaluation demonstrates that static and dynamic reduction are critical for
performance: ablating either of those mechanisms reduces the number of benchmarks solved, while
a naïve baseline that uses łrejection samplingž enumeration is unable to solve any benchmarks.

2 ECTA BY EXAMPLE

In this section we illustrate the ECTA data structure and its two major featuresÐstatic and dynamic
reductionÐusing the problem of type-driven program synthesis as a motivating example. We give
a simple encoding of the space of well-typed small programs into ECTAs, and then show how the
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(b) Reduced ECTA.

Fig. 2. ECTAs representing all well-typed size-two terms in the environment Γ1.

general-purpose ECTA operations are used to efficiently enumerate the well-typed terms. We will
present the full encoding, which also handles arbitrary prenex polymorphism and higher-order
functions, in ğ7, along an with ECTA encoding of another problem domain.

2.1 Representing Spaces of Well-Typed Terms

Consider a typing environment Γ1 = {x : Int,y : Char, f : Bool→ Bool,д : Int→ Bool,h : Char→

Int}. Suppose we are interested in enumerating all application terms that are well-typed in Γ1; for
now let us restrict our attention to terms of size twoÐthat is, applications of variables to variables.
The space of all such terms can be compactly represented with an ECTA, as shown in Fig. 2a.

This ECTA has a transition for each variable in Γ1; scalar variables (x and y) are annotated with
their type, while functions (f , д, and h) are annotated with an argument type targ and a return
type tret. The node (state) unary represents the space of all unary variables, while the node scalar
represents the space of all scalars. The accepting node has a single incoming transition app, which
represents an application of a unary fun to a scalar arg, fulfilling the restriction to size-two terms.3

While the underlying tree automaton of this ECTA (its skeleton) accepts all terms of the form
A B where A ∈ { f ,д,h} and B ∈ {x ,y}; most of these terms, such as f x are ill-typed. In order
to restrict the set of represented terms to only well-typed ones, there is an equality constraint

fun.targ = arg.type attached to the app transition, which demands that the types of the formal
and the actual arguments coincide. Thanks to this constraint, the full ECTA accepts only the two
well-typed terms, д x and h y. (Note that in this presentation, we give names to the incoming edges
of each transition to make the constraints more readable; in the formalization, we instead use
indices to refer to the edges.)

2.2 Static Reduction

How would one go about enumerating the terms represented by the ECTA in Fig. 2a? A naïve
approach is to (1) enumerate all terms represented by its skeleton and (2) filter out those terms
that violate the constraint. Step 1 is easily accomplished via depth-first search, starting from the
root (the accepting node) and picking a single incoming transition for every node. This approach
is, however, inefficient: it ends up constructing six terms, only to filter out four of them. In ECTA
terminology, the skeleton admits six runs, four of which are spurious (violate the constraints).

3In our full encoding in ğ7 we remove the distinction between the terms of different arity in order to support higher-order

and partial applications.
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Fig. 3. ECTAs representing size-two terms of type Bool. The diagram on the right shows how a sequence of

static reductions on the constraints 1⃝, 2⃝, and 3⃝ eliminates the grayed-out transitions and nodes.

Our first key insight is that enumeration can often be made more efficient by transforming the
ECTA’s skeleton so as to reduce the number of spurious runs. We refer to this transformation as
static reduction (because it happens once, before the enumeration starts). The reduced ECTA for our
example is given in Fig. 2b. Intuitively, we were able to eliminate the f transition entirely because
there are no scalar variables that match its formal argument type Bool; as a result the reduced
ECTA contains only two spurious runs instead of four.

More formally, static reduction works via automata intersection. For the ECTA in Fig. 2a, reducing
the constraint fun.targ = arg.type involves constructing an automaton that accepts all terms
reachable via the path arg.typeÐnamely Int and CharÐand intersecting it with each node at the
path fun.targ. Since the child node of f labeled targ represents only Bool, the intersection for that
child is empty, meaning the f transition can never be used to satisfy the constraint, and hence can
be eliminated. The reduction algorithm performs a similar intersection for g and h, as well as (in
the other direction) x and y, but finds that each of these other choices could be part of a satisfying
run, and eliminates no further transitions.

2.3 Type-Driven Program Synthesis with ECTAs

In type-driven program synthesis, we are typically not interested in all well-typed terms, but rather
terms of a given query type. The ECTA in Fig. 3 (left) represents a type-driven synthesis problem
with the same environment Γ1 as before and query type Bool. The main difference between this
automaton and the one in Fig. 2b is the new transition query, whose type edge encodes the given
query type and whose term edge connects to the node representing all well-typed terms in the
search space. To filter out the terms of undesired types, constraint 1⃝ prescribes that the term’s type
be equal to the query type. In order for this constraint to make sense, we also add a type annotation
to the app transition; the type of an application is initially undetermined (can be any base type),
but is restricted by a new constraint 2⃝ to coincide with the return type of the function.

Fig. 3 (right) demonstrates a sequence of static reductions that happens to eliminate all spurious
run of this ECTA, until its skeleton represents the sole solution to the synthesis problem: the term
д x . First, reducing constraint 1⃝ eliminates all possible types of the application except Bool; next,
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Fig. 4. Type-driven synthesis with polymorphic functions. Left: ECTA representing all terms of types Bool

or Int in Γ2. Grayed-out transitions are eliminated by static reduction. Right: Intermediate state during

enumeration. The choice of the query type has been suspended into an auxiliary automaton V1.

reducing 2⃝ eliminates the function h as it has a wrong return type; finally, reducing 3⃝ eliminates
the argument y, since it is incompatible with the only remaining function д.

2.4 Dynamic Reduction

In the previous example, static reduction was able to eliminate all spurious runs of the ECTA before
enumeration. so that no spurious runs remained. This is not always possible. Consider a slightly
more involved version of type-driven synthesis where functions can be polymorphic. Specifically
let Γ2 = {x : Int,y : Char,д : ∀α .α → α ,h : Char → Bool}, and suppose we are interested in all
size-two terms of types Int or Bool. This problem can be represented by the ECTA in Fig. 4, which
is similar to the one in Fig. 3. The only interesting difference is how the polymorphic type of д
is represented: the type variable α is encoded as a union of all types it can unify withÐhere Bool,
Char, and Int.4 Crucially, the constraint 4⃝ on д guarantees that the same type is used to instantiate
both occurrences of α .

Although static reduction can eliminate some of the transitions in this ECTA (shown in gray), a
fair number of spurious runs remain. For example, a naïve left-to-right enumeration would first
pick Bool as the query type and д as the function (forcing the selection of Bool → Bool as the
type of д), only to discover later that there is no argument of type Bool. More generally, in the
presence of constraints, the choices made for constrained nodes are not independent, and making a
wrong combination of choices early on (such as Bool and д in our example) may lead to expensive
backtracking further down the line.

Our second key insight is that such backtracking can be avoided by deferring the enumeration
of constrained nodes until more information is available. Fig. 4 (right) illustrates this idea. It depicts
a partially enumerated term from the ECTA on the left. You can think of a partially enumerated term
as a tree fragment at the top with yet-to-be-enumerated ECTAs among the branches. Importantly,

4Here we consider a limited form of polymorphism, where type variables can be instantiated only with base types; this

restriction is relaxed in ğ7.
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because the node qtype is constrained (by 1⃝), it is not enumerated eagerly, but instead suspended

into a named sub-automaton V1. As the enumeration encounters each other node n constrained
to be equal to qtype (via 1⃝, 2⃝, and 4⃝), n is replaced by a reference to V1, while V1 is updated to
V1 ⊓ n. Thus, to arrive at Fig. 4 (right), the enumeration has made a single decisionÐpicking д over
hÐwhereas all the other choices have been deferred.

Finally, the enumeration picks x among the two scalars. The type state of xÐlet’s call it nxÐ
represent a singleton {Int} and is constrained to equalV1 (by 3⃝). As a result,V1 gets intersected with
nx , eliminating its Bool alternative. Now when it comes time to łunsuspendž V1, it only contains a
single alternative, Int, which is already guaranteed to be consistent with all constraints. In other
words, we have found the solution д x5 without having to explicitly search over all possible query
types, result types of the application, or instantiations of д; instead all these three choices were
made simultaneously and consistency. We refer to this mechanism as dynamic reduction because it
reduces the number of explored spurious runs during enumeration.

3 ACYCLIC ECTA

This section formalizes the ECTA data structure and its core algorithms. We begin by presenting
the special case of ECTAs without cycles, which simplifies both the theory and implementation.
Proofs of all theorems omitted from this and the following sections can be found in the extended
version [Koppel et al. 2022].

3.1 Preliminaries

We first present standard definitions of terms, paths, and the prefix-free property from the term-
rewriting literature.

Terms. A signature Σ is a set of function symbols, each associated with a natural number by the
arity function. T (Σ) denotes the set of terms over Σ, defined as the smallest set containing all
s (t0, . . . , tk−1) where s ∈ Σ, k = arity(s ), and t0, . . . , tk−1 ∈ T (Σ). We abbreviate nullary terms of
the form s () as s .

Paths. Paths are used to denote locations inside terms. Formally, a path p is a list of natural numbers
i1.i2. . . . .ik ∈ N

∗. The empty path is denoted ϵ , and p1.p2 denotes the concatenation of paths p1 and
p2. We write p1 ⊑ p2 if p1 is a prefix of p2 (and p1 ⊏ p2 if it is a proper prefix). A set P of paths is
prefix-free if there are no p1,p2 ∈ P such that p1 ⊏ p2.
Given a term t ∈ T (Σ), a subterm of t at path p, written t |p , is inductively defined as follows:

(i) t |ϵ = t (ii) s (t0, . . . , tk−1) |i .p = ti |p if i < k and ⊥ otherwise. For example, for t = +( f (a), f (b)):
t |0.0 = a, t |1.0 = b and t |2.0 = ⊥.

3.2 Path Constraints and Consistency

The difference between ECTAs and conventional tree automata is the presence of path equalities,
such as 0.0 = 1.0 in Fig. 1d. We now formalize the semantics of these path equalities over terms,
before using them to define the ECTA data structure. In the following, we are interested in equalities
between an arbitrary number n > 0 of paths rather than just two paths; we refer to such n-ary
constraints as path equivalences classes (PECs).

Definition 3.1 (Path Equivalence Classes). A path equivalence class (PEC) c , is a set of paths. We
write a PEC {p1,p2, . . . ,pn } as {p1 = p2 = · · · = pn }.

Intuitively, the constraint 0.0 = 1.0 is satisfied on a term t if t |0.0 = t |1.0; this notion generalizes
straightforwardly to non-binary PECs:

5The only other solution to this synthesis problem is h y , which is discovered after backtracking and picking h over д.
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Definition 3.2 (Satisfaction of a PEC, Value at a PEC). A path equivalence class c = {p1 = · · · = pn }
is satisfied on a term t if there is some t ′ such that, ∀pi ∈ c, t |pi = t ′. We write t |= c if this condition
holds, and t |c to denote this unique t ′.

Finally, we discuss sets of PECs, called path constraint sets (PCSs):

Definition 3.3 (Path Constraint Sets, Satisfaction, Consistency). A path constraint setC = {c1, . . . , cm }

is a set of disjoint path equivalence classes. A term t satisfies C , written t |= C , if ∀c ∈ C, t |= c . If
there exists a t such that t |= C , then C is consistent; otherwise, it is inconsistent.

Note that any set of PECs can be normalized into a PCS by merging non-disjoint PECs; for example,
the set {{0 = 1}, {1 = 2}} can be normalized into {{0 = 1 = 2}}. In the following, we assume that
the results of all PCS operations (e.g. C1 ∪C2) are always implicitly normalized.

We are interested in detecting inconsistent PCSs because ECTA operations can use this property to
prune empty subautomata. For a single PEC c , consistency is rather straightforward: c is consistent iff
it is prefix-free.6 A non-prefix-free PEC, such as 1.0.0 = 1, requires a term to be equal to its subterm,
which is impossible since terms are finite trees. For a PCS, however, the story is more complicated:
in particular, it is not sufficient that each of its member PECs is prefix-free, because two PECs may
reference subterms of each other. For example, consider the PCSC = {c1, c2} = {{0 = 1.0}, {0.0 = 1}}.
Although c1 and c2 are prefix-free, together they imply an inconsistent constraint 1.0.0 = 1, which
can be obtained by substituting 1.0 for 0 in c2, as justified by c1.

For more intuition, consider two patterns f (A,д(A)) and f (д(B),B); it is easy to see that the terms
matching these patterns satisfy the PECs c1 and c2, respectively. The conjunction of the two PECs
corresponds to the unification of the two patterns, which produces unification constraintsA = д(B)
and д(A) = B, and eventually the contradictory constraint B = д(д(B))Ðwhich corresponds exactly
to the 1 = 1.0.0 PEC above. In unification parlance, we say that this constraint fails an occurs check.
Checking consistency of a PCS is the name-free analogue of the occurs check.

Checking Consistency via Congruence Closure. These observations suggest an algorithm for
checking PCS consistency: (1) saturate the PCS with all implied equalities (such as 1.0.0 = 1 above),
and (2) check if any of them is non-prefix-free. To formalize the former step, we first declaratively
define the closure operation on PCSs, and then discuss how to implement it efficiently.

Definition 3.4 (Closure). A PCS C is closed if the following holds for any c1, c2 ∈ C : for any paths
p,p ′,p ′′, if p ′,p ′′ ∈ c1 and p ′.p ∈ c2, then p ′′.p ∈ c2. In other words, whenever c2 contains an
extension of a path in c1, it also contains the same extension of all paths in c1. The closure of C ,
denoted cl(C ), is the smallest closed PCS that contains C .

For example, the PCS C = {c1, c2} = {{0 = 1.0}, {0.0 = 1}} is not closed: if we set p ′ = 0,p ′′ = 1.0,
and p = 0, then 0 ∈ c1, 1.0 ∈ c1, and 0.0 ∈ c2, but 1.0.0 < c2. The closure of this PCS cl(C ) = {c

′
1, c
′
2},

where c ′1 and c ′2 are infinite PECs of the form c ′1 = {0 = 1.0 = 0.0.0 = 1.0.0.0 = . . .} and
c ′2 = {1 = 0.0 = 1.0.0 = 0.0.0.0 = . . .}.

Theorem 3.5 (Correctness of Closure). For any term t ∈ T (Σ), t |= C ⇔ t |= cl(C ).

Theorem 3.6 (Consistency of a Closed PCS). Let C be a closed PCS. Then C is inconsistent iff

one of the ci ∈ C is not prefix-free.

Together Theorem 3.5 and Theorem 3.6 ensure the correctness of our consistency check-
ing procedure; what is left is to implement the closure computation efficiently. It turns out
this can be done using the well-known congruence closure algorithm for the first-order the-
ory of equality and uninterpreted functions [Nelson and Oppen 1980]. This algorithm finitely

6Technically, we must also ensure that ∀i ∈ c .i < maxs∈Σ arity(s ), but this is trivially maintained by all ECTA operations.
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Syntax

c ::= {p1 = · · · = pn } path equivalence classes

C ::= {c1, . . . , cm } path constraint sets

n ::= U(e ) nodes (states)

e ::= Π(s,n,C ) | Π⊥ transitions

Denotation

JU(e )KN =

⋃

i Je
i KE

JΠ(s,n,C )KE =

{

s (t )
����
t i ∈ Jni KN , s (t ) |= C

}

Fig. 5. Acyclic ECTAs: syntax and semantics. Here s ∈ Σ and p is a path.

0

.0

.0

1

represents a possibly infinite set of equalities using an e-graph. Hence, to
check consistency of a PCS C , we can simply (1) add each path of C into an
e-graph, interpreting path prefixes as subterms (i.e. 1.0 is .0 applied to 1);
(2) merge all paths from the same PEC into one e-class and run congruence
closure on the e-graph; (3) check if the resulting e-graph has cycles; if so,
then C is inconsistent. The figure on the right shows the (cyclic) e-graph
obtained by running this algorithm on our example {{0 = 1.0}, {0.0 = 1}}.

3.3 Acyclic ECTAs: Core Definition

Like string automata, tree automata are usually formalized as graphs, defined by a set of states and
a transition function. For our purposes, it is more convenient to formalize ECTAs using a recursive
grammar, in the same style VSAs are typically presented [Polozov and Gulwani 2015].

Syntax. Fig. 5 (left) shows the grammar for acyclic ECTAs, consisting of mutually recursive
definitions for nodes (states) n ∈ N and transitions e ∈ E; an ECTA then is identified with its root
node, which represents the final state.7 In a transition Π(s,n,C ),8 the number of child nodes |n |
must equal arity(s ); both n and C can be omitted when empty. As is common for VSAs, we assume
implicit sharing of sub-trees: that is, an acyclic ECTA is a DAG with no duplicate sub-graphs.
The special symbol Π⊥denotes an łempty transitionž, which is used in intermediate results of

ECTA operations. For symmetry, we also abbreviate the empty node, U(), as U⊥. A normalized ECTA
contains no occurrences of Π⊥or U⊥, unless the root is itself U⊥. Any ECTA can be normalized
by iteratively replacing any transition containing a U⊥child with Π⊥, and removing all instances
of Π⊥from the children of each node. For instance, U(Π(a),Π(+, [U(Π(b)), U⊥])) normalizes to
U(Π(a))). We assume henceforth that all ECTAs are implicitly normalized after every operation.

Semantics and Spurious Runs. The denotation of an acyclic ECTA, i.e. the set of terms it accepts,
is defined in Fig. 5 (right) as a pair of mutually-recursive functions: J·KN : N → P(T (Σ)) and
J·KE : E → P(T (Σ)). We define a partial order ≺ on ECTAs as the subset order on their denotations:
n1 ≺ n2 iff Jn1KN ⊆ Jn2KN . The skeleton of an ECTA, sk(n), is obtained by recursively removing
all path constraints from its transitions. A spurious run of n is a term t , that is rejected by n but
accepted by its skeleton: t < JnKN ∧ t ∈ Jsk(n)KN .

3.4 Basic Operation: Union and Intersection

We now present algorithms for two basic operations on ECTAs, union and intersection. They serve
as building blocks for our two core contributions: static and dynamic reduction.

Union. The union of two ECTAs, n1 ⊔ n2, simply merges the transition of their root nodes:

Definition 3.7 (Union). Let n1 = U(e1),n2 = U(e2) be two nodes. Then n1 ⊔ n2 = U(e1 ∪ e2).

7Although this representation is restricted to ECTAs with a single final state (the root node), this is not an important

restriction: any acyclic tree automaton is equivalent to the same automaton with all its final states merged into one.
8Hereafter we write x to denote a sequence of xs, with x i referring to the i-th element of that sequence.
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n
2

g h

Bool

targ tret

Char Char

targ tret

Int

n
1

f g

Bool

targ tret

Char

targ tret

Int Bool CharInt Int Char

targ=tret

n
u

f g

targ tret targ tret

gh targ=tret

targ tret targ tret

... ... ... ...

n
i

g

targ tret

CharIntInt

targ=tret

Fig. 6. Two ECTAs n1 and n2, their union nu and intersection ni .

Fig. 6 gives an example of ECTA union nu = n1 ⊔ n2.

Theorem 3.8 (Correctness of ECTA Union). Jn1 ⊔ n2KN = Jn1KN ∪ Jn2KN .

Intersection. The intersection of two ECTAs is more involved. Intersecting two nodes, n1 ⊓ n2,
involves intersecting all pairs of their transitions; intersecting two transitions, e1 ⊓ e2, in turn,
involves intersecting their child nodes point-wise, and is only well-defined if the symbols and PCSs
of e1 and e2 are compatible:

Definition 3.9 (Intersection). Let n1 = U(e1),n2 = U(e2) be two nodes, then:

n1 ⊓ n2 = U

({

ei1 ⊓ e
j
2

����
ei1 ∈ e1, e

j
2 ∈ e2

})

Let e1 = Π(s1, [n
0
1 . . .n

k−1
1 ],C1), e2 = Π(s2, [n

0
2 . . .n

l−1
2 ],C2) be two transitions, then:

e1 ⊓ e2 =




Π(s1, [n
0
1 ⊓ n

0
2, . . . ,n

k−1
1 ⊓ nk−12 ],C1 ∪C2) if s1 = s2 and C1 ∪C2 is consistent

Π⊥ otherwise

Consider the example of ECTA intersection ni = n1 ⊓ n2 in Fig. 6. To compute the intersection
at the top level, we intersect all pairs of transitionsÐ( f ,д), ( f ,h), (д,д), and (д,h)Ðbut the three
pairs with incompatible function symbols simpy yield Π⊥ and are discarded. To intersect the two
д-transitions, we recursively intersect their targ and tret nodes; the resulting д-transition also
inherits its constraint from n2.

Theorem 3.10 (Correctness of ECTA Intersection). Jn1 ⊓ n2KN = Jn1KN ∩ Jn2KN .
Proposition 3.11. U⊥ ⊓ n = n ⊓ U⊥ = U⊥

Corollary 3.12. Define n1 � n2 if Jn1KN = Jn2KN . Then, with respect to (�), the (⊓) and (⊔)

operations form a distributive lattice, with U⊥ as the bottom element, and (≺) as the order.

3.5 Static Reduction

We are now ready to present static reduction, the first of the two core algorithms that enable
efficient extraction of terms satisfying ECTA constraints. Consider the example in Fig. 2. Intuitively,
the constraint fun.targ = arg.type has been reduced in Fig. 2b, because with f elimitated, every
possible formal parameter type at path fun.targ matches some actual parameter type at path
arg.type. More generally, a binary constraint p1 = p2 is reduced if everything at path p1 matches
something at path p2; this definition extends naturally to non-binary constraints. We now define
the machinery to state this formally, and then provide a simple algorithm for reducing a constraint,
which builds upon ECTA intersection.

Subautomaton at a Path. First, we generalize the definition of a subterm at a path, t |p , to ECTAs:
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Definition 3.13 (Nodes at path, Subautomaton at a path). The set nodes(n,p) of nodes reachable
from n = U(e ) via path p is defined as:

nodes(n, ϵ ) = {n} nodes(n, j .p) =
⋃

i

nodes(ei , j .p)

The set nodes(e,p) of nodes reachable from a transition e = Π(s,n,C ) is defined as:

nodes(e, j .p) =




nodes(nj ,p) j < arity(s )

∅ otherwise

Finally, the subautomaton of n at path p is defined as n |p =
⊔

nodes(n,p); similarly, the subautoma-
ton of e is defined as e |p =

⊔

nodes(e,p).

In Fig. 2a, if n is the root node, then nodes(n, arg.type) = {U(Π(Int)), U(Π(Char))} and n |arg.type =
U([Π(Int),Π(Char)]). The reader might be wondering why define nodes(e, j .p) = ∅ for an out-
of-bounds index j instead of restricting these and following definitions to łwell-formedž paths.
The rationale is to enable ECTAs to have łcousinž transitions with different arities, and be able to
navigate to nodes and subautomata at higher arities, by simply discarding branches with lower
arities; this flexibility is required, for instance, in our full encoding of type-driven synthesis in ğ7.2.

Without equality constraints, the denotation of n |p would simply be the set of subterms t |p of all
terms t represented by n. With equality constraints, n |p is an overapproximation of that set, since
the equality constraints on the topmost layers get ignored.

Lemma 3.14 (Correctness of subautomaton at a path). For anyn,p, Jn |pKN ⊇
{

t |p
����
t ∈ JnKN

}

.

Similarly, for any e , Je |pKE ⊇
{

t |p
����
t ∈ JeKE

}

.

This lemma can be used to prove that a term is present in Jn |pKN but not that it is absent. Fortu-
nately, we only need to show presence when proving soundness of static reduction (Theorem 3.20).

Reduction Criterion. We can now formally state what it means for a constraint to be reduced:

Definition 3.15 (Reduction Criterion). Let e = Π(s,n,C ) be a transition and let c = {p1 = · · · =
pk } ∈ C . We say that e satisfies the reduction criterion for c (alternatively, c is reduced at e) if, for
each pi ,pj ∈ c and each n ∈ nodes(e,pi ), n ⊓ e |pj , U⊥.

The reduction criterion suggests an algorithm for reducing a path constraint: given a constraint
p1 = p2 on transition e , replace every node n reachable via p1 with n ⊓ e |p2 . As a result, every
node in nodes(e,p1) will match some node in nodes(e,p2). For example, to reduce the constraint
fun.targ = arg.type at the transition app in Fig. 2, the algorithm first computes app|arg.type, the
automaton representing all possible actual parameter types; the result is na = U(Π(Int),Π(Char)).
Next, it intersects na it with each of the three nodes reachable via fun.targ, that is, Int, Char, and
Bool. This has no effect on the targ children of д and h, but the targ child of f becomes U⊥, leading
to the removal of the f transition upon normalizatoin and resulting in Fig. 2b.

Intersection at a Path. In order to formalize the reduction algorithm outlined above, we introduce
the notion of intersection at a path.

Definition 3.16 (Intersection at a Path). Intersecting node n with node n′ at path p, denoted n |⊓n
′

p ,

replaces all nodes reachable from n via p with their intersection with n′. More formally, if n = U(e ):

n |⊓n
′

ϵ = n ⊓ n′ n |⊓n
′

j .p = U(ei |⊓n
′

j .p )
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where intersecting a transition e = Π(s, [n0, . . . ,nk−1],C ) at a non-empty path p is defined as:

e |⊓n
′

j .p =





Π(s, [n0, . . . ,nj |⊓n
′

p , . . . ,n
k−1],C ) j < arity(s )

Π⊥ otherwise

For example, in Fig. 2a, intersecting the root node n at path fun.targ with the node na from our
previous example (na = U(Π(Int),Π(Char))) yields the ECTA in Fig. 2b.

Lemma 3.17. t ∈ J
(

n |⊓n
′

p

)

|pKN if and only if t ∈ Jn |pKN and t ∈ Jn′KN . Similarly, t ∈ J
(

e |⊓n
′

p

)

|pKE
if and only if t ∈ Je |pKN and t ∈ Jn′KN .

Reduction Algorithm. With this new terminology, we can recast our previous explanation of
how the constraint fun.targ = arg.type in Fig. 2 gets reduced: once we have obtained the łactual
parameter automatonž na = app|arg.type, we can simply return n |

⊓na
fun.targ

(where n is the root node).
This explanation needs one final tweak: in this example, the information only propagates in one
directionÐfrom arg.type to fun.targÐbecause the types of the actuals happen to be a subset of the
types of the formals; in general, though, reduction needs to propagate information both ways. Hence
a more accurate recipe for how to perform the reduction in Fig. 2 is: (1) compute the automaton
n∗ =

(

n |fun.targ
)

⊓
(

n |arg.type
)

, capturing all shared formal and actual parameter types; (2) intersects

the root with n∗ at both paths involved in the constraint:
(

n |⊓n
∗

fun.targ

)

|⊓n
∗

arg.type. We extrapolate this

description into a general algorithm for static reduction:

Definition 3.18 (Static Reduction). Let c = {p1 = · · · = pk } be a prefix-free PEC; then

reduce(e, c ) = e |⊓n
∗

p1
. . . |⊓n

∗

pk
where n∗ =

l

pi ∈c

e |pi

Theorem 3.19 (Completeness of Reduction). reduce(e, c ) satisfies the reduction criterion for c .

Theorem 3.20 (Soundness of Reduction). Let e = Π(s,n,C ) be a transition and c ∈ C ; then:

Jreduce(e, c )KE = JeKE

4 FAST ENUMERATIONWITH DYNAMIC REDUCTION

We now turn to our second core contribution: the algorithm for efficiently extracting (or enu-
merating) terms represented by an ECTA. As we have outlined in ğ2.4, the main idea behind
the algorithm is to avoid eager enumeration of constrained nodes, instead replacing them with
łunificationž variablesÐthe mechanism we dub dynamic reduction.

Inspired by presentations of DPLL(T) and Knuth-Bendix completion [Bachmair and Dershowitz
1994; Nieuwenhuis et al. 2006], we formalize the enumeration algorithm as a non-deterministic
transition system. Configurations of this system are called enumeration states and steps are governed
by two rules,Choose and Suspend. Intuitively,Choose handles unconstrained ECTA nodes, making
a non-deterministic choice between their incoming transitions; Suspend handles constrained nodes,
suspending them into variables. Fig. 7, which serves as the running example for this section,
shows an example sequence of Choose and Suspend steps applied to a simplified version of the
ECTA from Fig. 4 (the simplified ECTA encodes all well-typed size-two terms in the environment
Γ = {x : Int,y : Char,д : α → α ,h : Char→ Bool}).
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Fig. 7. An example sequence of steps through enumeration states. The focus node of each step is highlighted

in blue and constraint fragments are highlighted in green. The final state is fully enumerated.

4.1 Enumeration State

The syntax of enumeration states is shown in Fig. 8 (left). Var is a countably infinite set of variables,
with a dedicated łrootž variable v⊤ ∈ Var. An enumeration state σ is a mapping from variables
to partially-enumerated terms (or p-terms for short). With the exception of v⊤, which stores the
top-level enumeration result, each variable captures a set of ECTA nodes that are constrained to be
equal. For example, in Fig. 7 (g), the variable v1 captures the nodes g.targ and x.type, which are
equated by the constraint on app, and also g.tret, equated to the former by the constraint on g.
A p-term τ is a term that might contain variables and unenumerated nodes (u-nodes for short).

A u-node □(n,Φ) is an ECTA node n annotated with zero or more constraint fragments ϕ, each
consisting of a PEC and a variable. Intuitively, a constraint fragment is a constraint propagated
downward from an ECTA transition. For example, in Fig. 7 (b), when the original constraint
fun.targ = arg.type on app is propagated down to unary and scalar, it is split into two fragments:
⟨targ = v1⟩ and ⟨type = v1⟩. The splitting is necessary because for each of the child u-nodes one
of the sides of this constraint is łout of scopež; hence a fresh variable v1 is introduced to refer to
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Enumeration States

s ∈ Σ,v ∈ Var, c ∈ PEC

ϕ ::= ⟨c = v⟩ Constraint fragments

Φ ::= ϕ Cons. fragment sets

τ ::= P-terms

| v | s (τ ) variable, application

| □(n,Φ) unenumerated node

σ ::= [v 7→ τ ] Enumeration states

C[·] ::= Contexts

| ·

| s (τ ,C[·],τ )

Enumeration step τ −→ τ ′,σ −→ σ ′

Choose-□

⟨ϵ = _⟩ < Φ Π(s, [n0, . . . ,nk−1],C ) ∈ e

C ′ = {⟨c j = v j ⟩ | c j ∈ C,v j is fresh}
τ i = □(ni , project(C ′ ∪ Φ, i ))

□(U(e ),Φ) −→ s (τ 0, . . . ,τk−1)

Choose
σ [v] = C[τ ] τ −→ τ ′ v is solved

σ −→ σ [v 7→ C[τ ′]]

Suspend-1
σ [v] = C[□(n, ⟨ϵ = v ′⟩ ∪ Φ)] v ′ < dom(σ )

σ −→ σ [v 7→ C[v ′],v ′ 7→ □(n,Φ)]

Suspend-2
σ [v] = C[□(n, ⟨ϵ = v ′⟩ ∪ Φ)] σ [v ′] = □(n′,Φ′)

σ −→ σ [v 7→ C[v ′],v ′ 7→ □(n ⊓ n′,Φ ∪ Φ
′)]

Fig. 8. Enumeration states and rules.

the common value at both sides. A variable v is solved in σ iff it is not mentioned in any of the
constraint fragments; for example, v1 is unsolved in Fig. 7 (b)ś(f) and solved in Fig. 7 (g).

A u-node is restricted iff its Φ is non-empty; an unrestricted u-node is written □(n). An enumera-
tion state σ is called fully enumerated if there are no restricted u-nodes anywhere inside σ . The
reader might be surprised that a fully enumerated state is allowed to have u-nodes at all; as we
explain in ğ4.4, this enables compact representation of enumeration results with łtrivial differences.ž

Denotation. The denotation of an enumeration state JσKS is a set of substitutions ρ : Var⇀ T (Σ),
which is compatible with the constraint fragments and subterm relations imposed by variables
inside p-terms. Because of the circular dependencies between a p-term and its enclosing σ , the
formal definition is somewhat technical and therefore relegated to the extended version.

4.2 Enumeration Rules

Fig. 8 (right) formalizes the above-mentioned Choose and Suspend rules as a step relation σ −→ σ

over enumeration states and an auxiliary step relation τ −→ τ ′ over p-terms.

Choose. We first formalize the auxiliary rule Choose-□ for p-terms. This rule takes a u-node,
non-deterministically selects one of its transitions e , and steps to a p-term that has e’s function
symbol at the root and new u-nodes as children. Step 5⃝ in Fig. 7 is an example application of this
rule: here the original u-node scalar turns into one of its two incoming transitions, x; step 1⃝ is also
an instance of this rule, albeit with no alternatives.
The tricky aspect of Choose-□ is propagating constraintsÐeither C from the transition e or

Φ from the original u-nodeÐto the newly minted u-nodes. The former scenario is illustrated in
step 1⃝: here the PEC c = {fun.targ = arg.type} on the app transition is split into two fragments,
⟨targ = v1⟩ and ⟨type = v1⟩, attached to the new u-nodes unary and scalar, respectively. To this
end, Choose-□ first creates a fresh variable v1 and forms a constraint fragment ⟨c = v1⟩ using the
original PEC c; next it projects this fragment down to each i-th child, retaining only those paths of
c that start with i and chopping off their heads. The project function is defined formally in Fig. 9.
Note how the two new fragments together completely capture the original constraint.
The latter scenarioÐpropagating existing constraint fragmentsÐis illustrated in step 5⃝. Here

the u-node scalar is restricted by the fragment ⟨type = v1⟩; in this case, there is no need to create
new variables: the existing fragment is simply projected down to the child tx and becomes ⟨ϵ = v1⟩.
In the general case, both new and existing constraint fragments should be combined; this is the
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case in step 2⃝, where the u-node targ inherits the fragment ⟨ϵ = v1⟩ from unary, and also acquires
a new fragment ⟨ϵ = v2⟩ by splitting the constraint on g.

Finally, consider the rule Choose, which lifts Choose-□ to whole enumeration states. This rule
allows making a step inside any component of σ , as long as its variable is solved. For example, in
Fig. 7 (e) we are not allowed to make a step inside v1 (say, choosing Bool among the three types),
because v1 still appears in the constraint fragment ⟨type = v1⟩ inside v⊤. The rationale for this
restriction is to avoid making premature choices for constrained nodes: in our example, picking
Bool would be a mistake, which is entirely avoidable by simply waiting until all constraints are
resolved (such as the state in Fig. 7 (g)).

Suspend. The Suspend rules handle u-nodes with ϵ-fragments, i.e. constraint fragments of the form
⟨ϵ = v⟩.9 Intuitively, an ϵ-fragment indicates that this node is the target of a constraint captured by
v . In response, the Suspend rules simply łmovež the target u-node to the v-component of the state,
replacing it with v in the original p-term.
The two Suspend rules differ in whether the current state σ already has a mapping for v: if it

does not, Suspend-1 initializes this mapping with its target u-node □(n,Φ); if it does, Suspend-2
updates this mapping, combining the old u-node □(n′,Φ′) and the new one □(n,Φ) by intersecting
their ECTAs and merging their constraint fragments. Note that the old value of v must necessarily
be a u-node, because Choose is not allowed to operate under unsolved variables.

An example application of Suspend-1 is step 3⃝ of Fig. 7. The target node tret has an ϵ-fragment
⟨ϵ = v2⟩; since v2 is uninitialized, Suspend-1 creates a new mapping [v2 7→ tret]. Step 6⃝, on the
other hand, is an example of Suspend-2: the target node tx is restricted by ⟨ϵ = v1⟩; sincev1 already
maps to tg, Suspend-2 updates it with tx ⊓ tg. As a result of this intersection, v1 now contains only
those types (in this case, the sole type Int) that make the term represented by v⊤ well-typed.

Eliminating Redundant Variables. Finally, let us demystify the transformation 4⃝ in Fig. 7,
which consists of three atomic steps. The first step suspends targ, which has not one but two ϵ-
fragmentsÐ⟨ϵ = v1⟩ and ⟨ϵ = v2⟩Ðeither of which can be targeted by a Suspend. Suppose that
the second one is chosen (both choices lead to equivalent results, up to variable renaming). Since
v2 is already initialized, Suspend-2 fires, merging tret and targ into a single u-node tg’ under v2;
importantly, tg’ inherits the other constraint fragment from targ, namely ⟨ϵ = v1⟩. Because of that,
Suspend-1 can now fire on tg’, creating the state [v⊤ 7→ . . . ,v2 7→ v1,v1 7→ tg], where tg is tg’
stripped of its constraint fragment. This new state is a bit awkward, since it contains a łredundantž
variable v2, which simply stores another variable, v1. To get rid of such redundant variables, we
introduce an auxiliary rule Subst, which simply replaces all occurrences of v2 with v1 and removes
the unused mapping from σ (see Fig. 9). After applying Subst, we arrive at the state in Fig. 7 (e).

4.3 Enumeration Algorithm

We are now ready to describe the top-level algorithm Enumerate. The algorithm takes as input an
ECTA n and produces a stream of fully-enumerated states. To this end, it first creates an initial state
σ0 = [v⊤ 7→ □(n)], and then enumerates derivations of σ0 −→

∗ σ• where σ• is fully enumerated
and −→∗ is the reflexive-transitive closure of −→. In each step, the algorithm has the freedom
to select (i) which u-node to target, and (ii) in the case of Choose, which transition to choose.
The enumeration rules are designed in such a way that the former selection constitutes łdon’t
care non-determinismž (i.e. any target node can be selected without loss of completeness); this is
in contrast to the latter selection, which constitutes łdon’t know non-determinismž and must be
backtracked. At the same time, different schedules of rule applications might lead to significantly

9Choose-□ does not apply to these nodes thanks to its first premise. Note also that because all PECs in the original ECTA

are prefix-free and this property is maintained by project, any fragment that contains ϵ , must only contain ϵ .
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Projecting constraint fragments

project(Φ, i ) =

⋃

ϕ ∈Φ project(ϕ, i )

project(⟨c = v⟩, i ) =





{⟨c ′ = v⟩} if c ′ , ∅

∅ otherwise

where c ′ =
⋃

p∈c project(p, i )

project(p, i ) =





⊥ if p = ϵ

{p′} if p = i .p′

∅ otherwise

Enumeration step (cont.) σ −→ σ ′

Subst
σ [v2] = v1

σ −→ [v1/v2] (σ \ [v2 7→ v1])

Fig. 9. Auxiliary definitions
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Fig. 10. (a) An ECTA representing all perfect trees of

depth three, whose leaves are either all x or all y (b)

The ECTA fully enumerated, in logarithmic space

different performance. The ecta library provides a default scheduleÐdepth-first, left to rightÐbut
enables the user to specify a domain-specific schedule in order to optimize performance.

Theorem 4.1 (Termination of Enumeration). There is no infinite sequence σ0 −→ σ1 −→ . . . .

Theorem 4.2 (Correctness of Enumeration). Let n be an ECTA, σ0 be the initial enumeration

state, and consider all finite sequences σ0 −→
∗ σ•, such that σ• is fully enumerated; then:

JnKN =
{

ρ (v⊤)
����
σ0 −→

∗ σ•, ρ ∈ Jσ•KS
}

4.4 Compact Fully Enumerated States

We now return to the design decision to allow (unrestricted) u-nodes in fully enumerated states.
Our running example in Fig. 7 does not motivate this decision very well: the fully enumerated state
in Fig. 7 (g) encodes a single term anyway, so it seems only natural to let Choose loose on the
last remaining u-node. For other ECTAs, however, a single fully-enumerated state might represent
exponentially many10 terms, or the terms might be exponentially larger, or both. For an example,
consider Fig. 10a. This ECTA represents the set of all perfect binary trees of depth three, whose
leaves are either all x or all y. A moment’s thought reveals that this set contains two trees, each
of size 15. Instead of returning these two large trees explicitly, the fully-enumerated state σ• in
Fig. 10b represents them as a hierarchy of unconstrained tree automata, from which the concrete
trees may be trivially generated. It is straightforward to see that the sizes of the two perfect trees
grow exponentially with their depth, while the size of σ• grows only linearly.

The main benefit of this design, however, is that, depending on the problem domain, some nodes
need not be enumerated at all, as long as we know their denotation is non-empty. For example,
to determine whether a propositional formula is satisfiable (ğ7.1), it is often enough to provide a
partial satisfying assignment, because the values of the unassigned variables are irrelevant; such a
partial assignment can be represented by a σ•, where irrelevant variables are left unenumerated.
Similarly, in type-driven synthesis, the polymorphic type of a component need not always be fully
instantiated, as long as we know that a compatible instantiation exists. In fact, as we explain in ğ7.2,

10Or, with the cyclic ECTAs of ğ5, infinitely many.
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Syntax

n ::= U(e ) | µx .U(e ) | x nodes (states)

e ::= Π(s,n,C ) | Π⊥ transitions

Unfolding Recursive Nodes

unfold(µx .n) = [µx .n
/

x]n

unfold(U(e )) = U(e )

Denotation

JU(e )KN =

⋃

i Je
i KE

Jµx .nKN = Junfold(µx .n)KN

JΠ(s,n,C )KE =

{

s (t )
����
t i ∈ Jni KN , s (t ) |= C

}

Fig. 11. Cyclic ECTAs: syntax and semantics. Here s ∈ Σ, C is a PCS, and x is a bound variable.

cyclic ECTAs can encode infinitely many possible polymorphic instantiations, and enumerating
them all would be simply impossible.

5 CYCLIC ECTA

We now present the formalism for fully general ECTAs, which may contain cycles. With cycles,
an ECTA node can now represent an infinite space of terms, such as an arbitrary term in some
context-free language, including (as in ğ7.2) the language of arbitrary Haskell types. While this
requires an extension to the syntax of ECTAs to allow recursion, shockingly, none of the algorithms
require substantial modification.

5.1 Cyclic ECTAs: Core Definition

Nat

S

Z

Env x = y.prev.prev      

prev

x y

(a)

Env x = y.prev.prev      

x

y

S Z

Z

S

Nat

S

Zprev

prev

prev

(b)

Fig. 12. (a) ECTA representing an envi-

ronment with two arbitrary natural num-

bers x and y, where y = x + 2. The Nat

node is represented µx .U(Π(S,x ),Π(Z )).

(b) The ECTA unfolded into lasso form.

The grayed-out transitions will be re-

moved by static reduction.

We extend acyclic ECTAs to cyclic by adding łrecursive
nodesž µx .U(e ). Within this node, x is a variable bound
to U(e ). In diagrams, we depict any use of x as a back-
edge to U(e ) and keep the µ binding itself implicit. Seman-
tically, x can be replaced with a copy of the node it is
bound to, so that an ECTA n is equivalent to [U(e )/x]nÐor
rather, to [µx .U(e )/x]n, since U(e ) contains further uses of
x . Fig. 12a shows an cyclic example ECTA, with a recursive
node Nat representing arbitrary natural numbers defined
by the grammar Nat ::= S (Nat) | Z . Fig. 11 gives the syntax
and semantics of cyclic ECTAs. The recursive definition of
JnKN should be interpreted with least-fixed-point seman-
tics (as it may unfold arbitrarily many times). Note that
this grammar excludes nodes like µx .x or µx .µy.x , which
would be meaningless. We again assume implicit sharing
of sub-trees.11

Cyclic ECTAs become unwieldy when constraints are
allowed inside cycles. As a recursive node µx .n is repeat-
edly unfolded and its constraints duplicated, it can yield an
arbitrarily large constraint system whose smallest solution
may be arbitrarily large. In fact, in this general case, ECTA
emptiness is undecidable:

Theorem 5.1 (Undecidability of Emptiness). Determining whether JnKN = ∅ is undecidable.
Proof. By reduction from the Post Correspondence Problem (see extended version). □

11However, this pseudo-tree representation precludes sharing of some nodes which would be shared in a true graph

representation.
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Nodes at Path

nodes(µx .n,p) = nodes(unfold(µx .n),p)

Intersection at a Path

(µx .n) |
⊓p
n′
= unfold(µx .n) |

⊓p
n′

Enumeration step τ −→ τ ′

Choose-µ
Φ , ∅

□(µx .n,Φ) −→ □(unfold(µx .n),Φ)

Fig. 13. Extensions to prior algorithms to account for recursive nodes

This motivates a restriction barring constraints on cycles, which guarantees that the constraint
system remains finite and efficient algorithms remain possible. More formally:

Definition 5.2 (Finitely-constrained ECTA). An ECTA n is finitely-constrained if, for all recursive
nodes µx .m reachable from n,m = sk(m).

We assume henceforth that all ECTAs are finitely-constrained. What makes such ECTAs tractable
is that, after sufficient unfolding, they enter what we call lasso form:

Definition 5.3 (Lasso form). An ECTA n is in lasso form if it contains no constrained recursive
nodes (i.e., no path constraint references a recursive node).

An ECTA in lasso form is split into a top portion, which contains constraints but no cycles, and a
bottom portion, which contains cycles but no constraints. The top portion permits only finitely
many choices, while the bottom portion can be enumerated and intersected as in classic tree
automata theory. While they may perform intersection on entire subautomata, neither static nor
dynamic reduction directly inspect nodes beneath the deepest constraint. Hence, with an updated
definition of intersection, our definitions for both static and dynamic reduction work unmodified
on ECTAs in lasso form. An example ECTA in lasso form is in Fig. 12b.

5.2 Algorithms for Cyclic ECTAs

Intersection. One formulation of intersection for classic string automata is a depth-first search
that begins from a pair of initial or final states and finds all reachable pairs of states. We use this
idea to extend our previous definition of intersection to cyclic ECTAs: the algorithm tracks all
previous visited pairs of nodes, and creates a recursive reference upon seeing the same pair twice.
More formally, we define n1 ⊓ n2 in terms of a helper operation, n1 ⊓

S
n2 (intersection tracking

the set of previously-visited pairs); which in turn invokes the helper n1 ⊓̃
S
n2. We assume a function

var({n1,n2}) mapping an unordered pair of nodes to a unique named variable for that pair. We use
the notation n1 ∈ n2 to mean that some descendant of n1 is equal to n2.

Let n1,n2 ∈ N be two ECTAs, S ⊆
(

N
2

)

be a set of unordered pairs of ECTAs, and define

S ′ = S ∪ {{n1,n2}}. Then define:

n1 ⊓
S
n2 =





var(n1,n2) {n1,n2} ∈ S

µz.n1 ⊓̃
S ′
n2 z = var({n1,n2}) ∧ z ∈ (n1 ⊓̃

S ′
n2)

n1 ⊓̃
S ′
n2 otherwise

The remainder of the definition is almost identical to the definition for acyclic ECTAs, except that
recursive nodes are first unfolded. Let unfold(n1) = U(e1) and unfold(n2) = U(e2). Then:

n1 ⊓̃
S
n2 = U

({

ei1 ⊓
S
e
j
2

����
ei1 ∈ e1, e

j
2 ∈ e2

})
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assn

assignment

a

a

b

b

true false true false

(a) Variable assignment

val

∧

cl1 cl2

a b ¬a ¬b

true

assn

assn val

true

assn

assn val

false

assn

assn val

false

assn

assn

cl1.assn.a=cl2.assn.a

cl1 cl2

assn.a=

val

assn.b=

val

assn.a=

val

assn.b=

val

cl1.assn.b=cl2.assn.b

(b) CNF formula

Fig. 14. ECTA encoding of a CNF formula (a ∨ b) ∧ (¬a ∨ ¬b)

Let e1 = Π(s1, [n
0
1 . . .n

k−1
1 ],C1), e2 = Π(s2, [n

0
2 . . .n

l−1
2 ],C2) be two transitions, then:

e1 ⊓
S
e2 =





Π(s1, [n
0
1 ⊓S

n02, . . . ,n
k−1
1 ⊓

S
nk−12 ,C1 ∪C2) if s1 = s2 and C1 ∪C2 is consistent

Π⊥ otherwise

Now, define n1 ⊓ n2 = n1 ⊓
∅
n2.

Static Reduction. Recall from ğ3.5 that static reduction is defined in terms of intersection at a
path, which in turn relies on the definition of nodes at path. Fig. 13 extends these operations to
unfold recursive nodes until the ECTA enters lasso form, at least with regards to the PEC under
consideration. Then the rest of the static reduction algorithm remains unchanged.

Enumeration. Adapting enumeration to cyclic ECTAs requires a single change: the new Choose-µ

rule in Fig. 13 unfolds recursive nodes referenced by some ancestor’s constraint. This rule continues
unfolding such nodes so long as they are referenced by a parent’s constraint, at which point it is a
fully enumerated node. Note that a fully-enumerated state will necessarily be in lasso form.

6 IMPLEMENTATION

We have implemented ECTAs in a library called ecta (pronounced as in łnectarinež). ecta is
implemented in 3000 lines of Haskell, with an additional 660 lines of tests. ecta has been very
carefully optimized, and features heavy memoization based on a mutable hashtable library.

7 APPLICATIONS

This section gives two examples of problem domains that can be reduced to ECTA enumeration:
boolean satisfiability (SAT; ğ7.1) and type-driven program synthesis (ğ7.2). The second domain has
already been introduced informally in ğ2; here we present its encoding in full generality, and in ğ8
we evaluate our encoding against a state-of-the-art synthesizerHoogle+. The purpose of presenting
the first domain is to demonstrate the versatility of ECTAs, not to compete with highly-engineered
industrial SAT solvers; hence we leave the SAT domain out of empirical evaluation.

7.1 Boolean Satisfiability

Problem Statement. Given a propositional formula in conjunctive normal form (CNF), the SAT
problem is to find a satisfying assignment to its variables. A CNF formula is a conjunction of clauses,
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where each clause is a disjunction of literals, and each literal is either a variable or its negation. For
example, the CNF formula (a ∨ b) ∧ (¬a ∨ ¬b) has two satisfying assignments: {a,¬b} and {¬a,b}.

Encoding. Fig. 14 illustrates our ECTA encoding for the above formula. The sub-automaton assn in
Fig. 14a represents the set of all possible variable assignments. The assignment transition has one
child per variable, and each variable node has two alternatives: true and false; hence, to extract a
term from assn one must pick a value for each variable.
The ECTA for the entire CNF formula is shown in Fig. 14b; this ECTA has a single top-level

conjunction transition ∧, with one child per clause. Each clause node has one alternative per
literal in that clause: the choice between these alternatives corresponds to picking which literal is
responsible for making the clause true. Each literal transitionÐsuch as a or ¬aÐhas two children:
assn is its local copy of the assignment sub-automaton and val is the Boolean value that this
literal assigns to its variable. The constraint on the literalÐsuch as assn.a = valÐrestricts its
local assignment in such a way that the literal evaluates to true. Finally, the constraints on the ∧
transition force all local assignments to coincide. Note that, while the various assn nodes are shared
in memory, each occurrence of this node is an independent choice unless so constrained. The
reader might be wondering why we chose to split these constraints per-variable instead of simply
writing cl1.assn = cl2.assn; as we explain next, this helps enumeration discover inconsistent
assignments quickly.

SAT Solving as ECTA Enumeration.With this encoding, the general-purpose ECTA enumeration
algorithm from ğ4 turns into a SAT solver.12 Specifically, once Enumerate has found a fully
enumerated state, the satisfying assignment can be read off the children of any assignment symbol
in that state; note that if we let Enumerate run past the first result, it will enumerate all satisfying
assignments, modulo irrelevant variables (see ğ4.4).

The overall solving procedure amounts to choosing a literal from each clause and backtracking
whenever the assignment becomes inconsistent. For example, suppose Enumerate has chosen a

from cl1; the enumeration state σ now contains variables va and vb , which store assignments for
a and b consistent with the current choices (that is, va is restricted to true, while vb still allows
both choices). If the algorithm now attempts to make an inconsistent choice of ¬a from cl2, this
inconsistency is discovered immediately when ¬a.val is suspended and intersected with va .

7.2 Type-Driven Program Synthesis

Problem Statement.We are interested in the following type-driven program synthesis problem:13

given a typeT , called the query type, and a components library Λ, which maps component names to
their types, enumerate terms of typeT built out of compositions of components fromΛ. For example,
a Haskell programmer might be interested in a code snippet that, given a list of optional values, finds
the first element that is not Nothing (and returns a default value if such an element does not exist).
The programmermight pose this as a type-driven synthesis problem, whereΛ is the Haskell standard
library, and the queryT is a→ [Maybe a]→ a. Given this problem, the state-of-the-art type-driven
synthesizer Hoogle+ [Guo et al. 2020; James et al. 2020] returns a list of candidate programs that
includes the desired solution: λdef mbs→ fromMaybe def (listToMaybe (catMaybes mbs)).
In this section we adopt the setting of Hoogle+, where components can be both polymorphic

and higher-order, both of which make the synthesis problem significantly harder. On the other
hand, also following Hoogle+, we do not consider synthesis of inner lambda abstractions: that is,
arguments to higher-order functions can be partial applications but not lambdas.

12A curious reader might be wondering why don’t we go the other direction: encode an ECTA into a SAT formula and use a

SAT solver for ECTA enumeration; this is not possible in general, as we discuss in more detail in ğ10.
13This problem is also known as type inhabitation [Urzyczyn 1997] and composition synthesis [Heineman et al. 2016].
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listToMaybe

→

map…

term1

in.elem=

out.elem

MaybeList

→

→ →
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anyany
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in.out=out.out.elem

(→)

(→)

… …

type type
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tag tag

in out in out

in out in out
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elem elem

(a) Variables (library components)

any

Maybe List
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…

→

(b) Types

term2

app
type = fun.type.out
fun.type.in = arg.type
fun.type.tag = arrow

term1

(→)

any

type

arrow

argfun

(c) Size-two terms

Fig. 15. Encoding of variables, types, and fixed-size terms in Hectare.

Hoogle+ Limitations. Hoogle+ works by encoding a synthesis problem into a data structure
called type-transition net: a Petri net, where places (nodes) correspond to types, and transitions
correspond to components; the synthesis problem then reduces to finding a path from the input
types to the output type of the query. This encoding has two major limitations:

(1) No native support for polymorphic components. In the presence of polymorphism, the space of
types that can appear in a well-typed program becomes infinite. Because types are encoded
as places, a finite Petri net cannot represent all candidate programs. Instead, Hoogle+ em-
ploys a sophisticated abstraction-refinement loop to build a series of Petri nets that encode
increasingly precise approximations of the set of types of interest.

(2) No native support for higher-order components. Because components are encoded as transitions
with a fixed arityÐthey transform a fixed number of types into a single typeÐall components
must always be fully applied. This precludes the use of higher-order components: for exam-
ple, in foldr (+) 0 xs, the binary component (+) is not fully applied. To circumvent this
limitation, Hoogle+ must add a separate nullary copy of the (+) component to the library.
Since these duplicate components bloat the library and slow down synthesis, in practice only
a few popular components are duplicated, thereby limiting the practicality of the synthesizer.

In this section we present Hectare (Hoogle+: ECTA REvision), our encoding of type-driven
synthesis as ECTA enumeration. This encoding has native support for both polymorphic and higher-
order components, without the need for an expensive refinement loop or duplicate components.

Encoding Types. Recall that ğ2 (Fig. 4) introduced an encoding for a limited form of polymorphism,
where the type variable α in a type like α → α could be instantiated only with base types. We
now generalize this encoding so that α can be instantiated with any type, with arbitrarily nested
applications of type constructors. The infinite space of all types can be finitely encoded as a
recursive node any, as shown in Fig. 15b. The any node has one child per type constructor in Λ,
with non-nullary type constructors looping back to any. Now the type α → α can be represented
as a→ transition, whose children are both any (and are constrained to equal each other).

Encoding Components. The simplified encoding in ğ2 splits components into different nodes
by their arity (e.g. the nodes scalar and unary in Fig. 2); this was necessary given our simplified
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encoding of function types, but as we mentioned above, such arity-specific encoding precludes
partial applications. Fig. 15a illustrates the generalized encoding of components in Hectare. Here
all components, regardless of arity, are gathered in single node term1 (łterms of size onež). Each
component is annotated with its type; function types are represented using the→ transition with
two child types, in and out (for now, ignore the grayed out edges labeled tag, we explain those
below). Fig. 15a showcases the type encoding for two polymorphic components: listToMaybe ::

[α] → Maybe α and map :: (α → β ) → [α] → [β]; as before, all occurrences of the same type
variable are related by equality constraints, shown in green.

Encoding Applications. Fig. 15c illustrates the Hectare encoding of size-two terms. As before,
the application transition app has two children fun and arg, but now they are both represented by
the same node term1; hence this encoding supports partial applications, such as map listToMaybe.
We now explain the purpose of the grayed-out parts of Fig. 15. The app node must ensure that

its fun child has an arrow type. The mere presence of fun.type.in and fun.type.out in its first two
constraints does not suffice: recall that the actual ecta library refers to children by index instead of
by name, and hence any other binary type constructor (such as Either) could satisfy those two
constraints. This would lead to accepting ill-typed programs, such as Left x y. To circumvent this
issue, we introduce a special tag transition (→), which occurs nowhere else but as a first child of
every→ transition; by constraining the first child of fun to be (→), app effectively ensures that it
is indeed a function (see the last constraint on app).14

This encoding of application terms generalizes from size-two terms to terms of arbitrary fixed
size n as follows: the node termn has n − 1 incoming app transitions, where the i-th transition
(i ∈ 1 . .n − 1) has children termi and termn−i .

Synthesis Algorithm. So far we have discussed how to encode the space of all well-typed terms
of size n. Let us now proceed to the top-level synthesis algorithm of Hectare. Given a query
type, such as a → [Maybe a] → a, Hectare first adds the inputs of the query (here def :: a and
mbs :: [Maybe a]) to the node term1, as if they were components. The algorithm then iterates over
program sizes n ≥ 1; for each size n, it constructs the ECTA termn and restricts its top-level type
to the return type of the query (here a), following the recipe illustrated in Fig. 3. The algorithm
then statically reduces all constraints in the restricted ECTA and enumerates all terms accepted by
the resulting reduced ECTA, before moving on to the next size n. Note that the type variables of
the query (here a) are represented as type constructors and not as the any node, since those type
variables are universally quantified.

Enforcing Relevancy. Existing type-driven synthesizers [Feng et al. 2017; Guo et al. 2020] restrict
synthesis results to relevantly typed termsÐthat is, terms that use all the inputs of the query.Without
such relevancy restriction, any synthesis algorithm gets bogged down by short but meaningless
programs. Hectare enforces relevancy via a slight modification to the simple synthesis algorithm
outlined above: it splits every termn node into 2k nodes, where k is the number of inputs in the

query. In our example, there are four nodes at each term size: term{def,mbs}n , term
{def}
n , term

{mbs}
n , term∅n ,

each representing terms that must mention the corresponding set of inputs. When constructing

a new term node, say term
{def}

2 , Hectare considers all applications of termP
1 to term

Q
1 such that

P ∪Q = {def}. At the top level, only term
{def,mbs}
n is connected to the accepting node. Although the

14Stepping back, tags are required in this encoding because the space of types in the Hectare ECTA is a sum of two

distinct variants: Type ::= (→) (Type, Type) | c (Type∗). The tags exist to discriminate between the→ variant and the variant

c (Type, Type), where c is any other binary type constructor, such as Either. One might ask: why not build the ability to

discriminate between variants of a sum directly into the ECTA? One way to do this is by referencing children by name

instead of by index, as in ğ2. This is a viable alternative approach, but it is less efficient: an implementation based on names

needs to compare them at every access, whereas one based on indices only needs to do so at sites where confusion is possible.
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Table 1. Three sample queries and corresponding solutions from two benchmark suites.

Suite Name Query Expected solution

H
o
o
g
le
+ mergeEither Either a (Either a b) → Either a b λ e → either Left id e

headLast [a] → (a, a) λ xs → (head xs, last xs)

both (a → b) → (a, a) → (b, b) λ f p → (f (fst p), f (snd p))

S
t
a
c
k
-

O
v
e
r
f
lo
w multiIndex [a] → [Int] → [a] λ xs is → map ((!!) xs) is

splitOn Eq a ⇒ a → [a] → [[a]] λ x xs → groupBy (on (&&) (/= x)) xs

matchedKeys (b → Bool) → [(a, b)] → [a] λ p xs → map fst (filter (p . snd) xs)

number of term-nodes in this encoding grows exponentially with the number of inputs, this is
not a problem in practice, since the number of inputs is typically small; note also that due to hash
consing in ecta, the overlapping component sets are not actually duplicated.

8 EVALUATION

As we explained in ğ7.2, we used the ecta library to implement Hectare, a type-driven component-
based synthesizer for Haskell. In this section, we evaluate the performance of Hectare and
compare it with the state-of-the-art synthesizer Hoogle+, based on an SMT encoding of Petri-net
reachability [Guo et al. 2020]. Both tools are written in Haskell, but the Hoogle+ implementation
(excluding tests and parsing) contains a whopping 4000 LOC, while Hectare only contains 400.
Although code size is an imperfect measure of development effort, these numbers suggest that the
ecta library has the potential to significantly simplify the development of program synthesizers.
We designed our evaluation to answer the following research questions:

(RQ1) How does Hectare compare against Hoogle+ on existing and new benchmarks?
(RQ2) How significant are the benefits of static and dynamic reduction in program synthesis?

All experiments were conducted on an Intel Core i9-10850K CPU with 32 GB memory.

8.1 Comparison on Hoogle+ Benchmarks

Experiment Setup. For our main experiment, we compare the two synthesizers on the benchmark
suite from the latest Hoogle+ publication [James et al. 2020]. This suite includes 45 synthesis
queries, and a library of 291 components from 12 popular Haskell modules. These benchmarks are
non-trivial: the expected solutions range in size from 3 to 9, with the average size of 4.7; 40% of
the components are polymorphic, and 44% of the queries require using a higher-order component.
Three sample queries from this suite are listed at the top of Tab. 1. The solutions to these queries
have sizes 4, 5, and 7 respectively, and mergeEither uses a higher-order component either.
Both Hoogle+ and Hectare yield candidate programs one at a time, gradually increasing the

size of the programs they consider. For both tools, our test harness terminates the search once the
expected solution has been found (or the timeout of 300 seconds has been reached). We report
the average time to expected solution over three runs. We configured Hectare to perform static
reduction on all constraints prior to running the fast enumeration procedure of ğ4.3, repeating this
operation up to 30 rounds or until the automaton converges.

Results. Fig. 16 plots the number of benchmarks solved vs. time for both synthesizers. Within the
timeout,Hectare solves 43 out of 45 benchmarks, whereasHoogle+ only solves 39. Importantly, as
we show in Fig. 17, on commonly solved benchmarks Hectare is significantly faster: it achieves an
average speedup (geometric mean) of 7× on this suite, solving all but two tasks faster thanHoogle+.
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Fig. 16. Benchmarks solved vs time for Hectare and

Hoogle+ on Hoogle+ benchmarks.
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Fig. 17. Synthesis times of Hectare againstHoogle+

on Hoogle+ benchmarks.

Fast synthesis times are especially important if a synthesizer is to be used interactively. As shown
in the zoomed-in scatter plot in Fig. 17 (right),Hectare also vastly outperformsHoogle+ if we con-
sider a shorter timeout of seven seconds, commonly used for interactive synthesizers [Ferdowsifard
et al. 2021]; in fact, Hectare solves 84% of the benchmarks within seven seconds.

The poor performance of Hoogle+ can be mainly attributed to the brittleness of the abstraction-
refinement loop it uses to support polymorphic components (ğ7.2). For example, the headLast

benchmark from Tab. 1 is one of the queries where Hoogle+ times out, while Hectare only takes
2.5 seconds. Upon closer inspection, Hoogle+ is unable to create an accurate type abstraction for
this query and ends up wasting a lot of time enumerating ill-typed terms. Hectare, in contrast,
natively supports polymorphic components via recursive nodes, which leads to more predictable
performance. On the other hand, the two benchmarks where Hectare is slower than Hoogle+

both involve deconstructing a Pair and using both of its fields (both from Tab. 1 is one of these
benchmarks). Hoogle+ solves these queries using a special treatment of Pairs: it introduces a
single component that projects both fields of a pair simultaneously, which makes the solutions to
these queries much shorter; in Hectare, we did not find a straightforward way to add this trick.
In general, we conclude that Hectare is effective in solving type-driven synthesis tasks and

outperforms a state-of-the-art tool on 89% of their benchmarks with 7× speedup on average.

8.2 Comparison on StackOverflow Benchmarks

Benchmark Selection. Recall that another limitation of Hoogle+ we discussed in ğ7.2 is its
restricted support for higher-order functions. In fact, the original Hoogle+ configuration contains
only nine components whose nullary versions are added to the Petri net (and which consequently
can appear in arguments to higher-order functions). In order to push the limits of both tools and
demonstrate the benefits of Hectare’s native encoding, we assembled an additional benchmark
suite focusing on higher-order functions. To this end, we searched StackOverflow for Haskell
programming questions; for each question, we attempted to construct an expected solution using
only applications of library components; we excluded tasks that can be solved without higher-order
functions or require unsupported features (such as higher-kinded type variables and inner lambda
abstractions). This left us with 19 synthesis queries. The new benchmark suite is generally more
complex than the original Hoogle+ suite: expected solutions range in size from 4 to 9, with the
average of 6.2; all of these programs include partial applications as arguments to higher-order
components. Three sample queries are shown at the bottom of Tab. 1.
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Fig. 18. Comparison of synthesis time on higher-

order benchmarks between Hectare and HplusAll.
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Fig. 19. Comparison of synthesis performance be-

tween Hectare and its two variants.

Experiment Setup. To run the newly collected benchmarks, we augmented the original component
set from Hoogle+ with seven components required in these benchmarks. We also created a variant
of Hoogle+ calledHplusAll, in which we added nullary copies of all components into the Petri net
(HplusAll thus has the same expressiveness asHectare). As before, we record the time to expected
solution, repeat the measurement three times, and report the average time; to accommodate the
increased benchmark complexity, we use a longer timeout of 600 seconds.

Results. Unsurprisingly, the original Hoogle+ cannot solve any of the new benchmarks: most
of them require using new components in higher-order arguments (and the rest are simply too
large). The results for HplusAll and Hectare are shown in Fig. 18. Although the search space
of HplusAll does include all the new benchmarks, it still fares poorly, solving only 3 out of 19.
The reason is that adding nullary versions of all components blows up the Petri net and makes
the reachability problem intractable. In contrast, Hectare’s native support for partial applications
enables it to solve 13 out of 19 tasks in this challenging suite, achieving 40× speedup on the three
commonly solved benchmarks. We therefore conclude that the benefits of ecta-based synthesis are
even more pronounced on larger benchmarks focused on higher-order functions.

8.3 Benefits of Static and Dynamic Reduction

Experiment Setup. To isolate the contributions of static and dynamic reduction, we compare
Hectare with its three variants: Hectare-StaticOnly, Hectare-DynamicOnly, and Hectare-
Naïve, which forgo one or both kinds of reduction, respectively. Specifically, both Hectare-
StaticOnly and Hectare-Naïve, use a naïve łrejection-samplingž enumeration. Note that in the
presence of recursive nodes, such as the any type, the naïve enumeration tends to get łstuckž,
constructing infinitely many spurious terms and never finding one that satisfies the constraints. To
prevent this behavior, we limit the unfolding depth of recursive nodes to three, which is sufficient
to solve all the benchmarks. We run the three variants on the Hoogle+ benchmarks with a timeout
of 300 seconds and report the average time to expected solution over three runs.

Results. Fig. 19 plots the number of benchmarks solved vs. time for Hectare and its variants.
Hectare-Naïve is omitted from the plot because it cannot solve any benchmarks: it spends most of
its time unfolding the recursive any node, or in other words, blindly going through all possible
instantiations of every polymorphic component. The other two variants fare significantly better:
Hectare-StaticOnly and Hectare-DynamicOnly are able to solve 34 and 36 tasks, respectively.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 91. Publication date: August 2022.



91:26 James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova

That said, as the tasks get harder, Hectare still outperforms these variants drastically: in particular,
the variants cannot solve any benchmarks of size six or larger.
A closer look at Fig. 19 reveals a curious difference: Hectare-StaticOnly is łall-or-nothingž:

it performs as well as Hectare on easy benchmarks, but then completely falls flat; Hectare-
DynamicOnly, in contrast, demonstrates amore gradual degradation of performance. To understand
why, recall that the biggest time sink during enumeration is blindly unfolding the recursive any
nodes. Static reduction can sometimes get rid of any nodes entirely, making the resulting ECTA
small enough that any enumeration algorithm would do; when it fails to do so, however, naïve
enumeration spends all its time in any nodes. Dynamic reduction, on the other hand, provides a
more gradual yet robust approach to dealing with any nodes, via Suspend. In summary, we find
that both static and dynamic reduction individually are critical to the performance of ECTA-based

programs synthesis, and moreover, they complement each other’s strengths.

9 RELATED WORK

Constrained Tree Automata. Tree automata have long been used to represent sets of terms in term
rewriting [Dauchet 1993; Feuillade et al. 2004; Geser et al. 2007], and we are not the first to consider
adding equality constraints to handle nonlinear rewrites. In fact, in 1995, Dauchet introduced a
data structure very similar to our ECTAs, called reduction automata [Dauchet et al. 1995]. In fact,
reduction automata are more expressive than ECTAs, as they also allow disequality constraints,
including disequalities (but not equalities) on cycles. Unfortunately, allowing disequalitiesÐor other
classes of constraints for that matterÐprecludes efficient static and dynamic reduction based on
automata intersection. For that reason, we consider ECTAs to be a sweet spot: expressive enough
to encode a variety of interesting problems, yet restricted enough to enable fast enumeration.

Other prior work on constrained tree automata [Barguñó et al. 2010; Barguñó et al. 2013; Bogaert
et al. 1999; Bogaert and Tison 1992; Reuß and Seidl 2010] similarly focuses on theoretical aspects,
such as worst-case complexity and decidability results, and we have found no reference to these
data structures being used in a practical system in the 30 years since their introduction.

Attribute grammars [Knuth 1968; Paakki 1995; Van Wyk et al. 2010] augment context-free gram-
mars with a number of equations of the form ⟨attribute⟩ =

〈

expression
〉

. This notation resembles a
constraint system over trees, but those equations are actually unidirectional assignments; attribute
grammars compute values over trues, but do not constrain them.

Unconstrainted FTAs, VSAs, and E-Graphs. In contrast to the purely theoretical work on con-
strained tree automata, their unconstrained counterparts, as well as VSAs and e-graphs, have
enjoyed practical applications in program synthesis [Gulwani 2011; Nandi et al. 2020, 2021; Polozov
and Gulwani 2015; Wang et al. 2017, 2018; Willsey et al. 2021] and related areas, such as theorem
proving [Detlefs et al. 2005], superoptimization [Yang et al. 2021], and semantic code search [Prem-
toon et al. 2020]. One important feature of these data structures, which ECTAs currently lack, is
the ability extract an optimal term according to a user-defined cost function. It is not surprising
that ECTAs have a slightly different focus, since in the presence of constraints extracting terms
regardless of cost becomes hardÐat least as hard as SAT solving. Extracting optimal terms would
be akin to MaxSAT solving [Krentel 1986]; we leave this non-trivial extension to future work.
Finally note that unlike FTAs and VSAs, e-graphs are used to represent a congruence relation

over terms, as opposed to an arbitrary term space; hence adding equality constraints to an e-graph
is less meaningful. Returning to our introductory example in Fig. 1, an e-graph equivalent to the
FTA in Fig. 1b would actually encode that a, b, and c, are all equivalent to each other; hence it is
hard to imagine why one would want to represent only the terms of the form +( f (X ), f (X )) but
not +( f (X ), f (Y )), because all these terms are equivalent.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 91. Publication date: August 2022.



Searching Entangled Program Spaces 91:27

10 CONCLUSIONS AND FUTURE WORK

This paper has introduced equality-constrained tree automata (ECTAs) and contributed an efficient
implementation of this new data structure in the ecta library. We think of ECTAs as a general-
purpose language for expressing constraints over terms, and the ecta library as a solver for these
constraints. Although in this paper we only discussed two concrete examples of properties that can
be encoded with ECTAsÐboolean satisfiability and well-typingÐin the future we hope to see many
fruitful applications in a wide range of domains.

ECTA vs. SMT. Instead of developing a custom solver for ECTAs, wouldn’t it be better to simply
translate ECTAs into SAT or SMT constraints, and use existing, well-engineered solvers? A natural
idea is to introduce a variable per ECTA node, whose value represents the choice of incoming
transition, and to translate ECTA constraints into equalities between these variables. This simple
idea, however, does not work: because the choice is made independently every time a node is
visited, this encoding would require unfolding the ECTA into a tree. This is a complete non-starter
for cyclic ECTAs (like the Hectare encoding of ğ7.2), since the corresponding tree is infinite. For
acyclic ECTAs, the tree is finite but might be exponential in the size of the ECTA (since we need to
łun-sharež all the shared paths in the DAG).

More generally, the problem of finding an ECTA inhabitant is not inNP, because the smallest tree
represented by an ECTA can be exponential in the size of the ECTA (as we illustrated in Fig. 10);
hence a general and efficient SAT encoding is not possible. Although future work might develop a
clever SMT encoding using advanced theories, we believe this problem is far from trivial. After all,
Hoogle+ uses an SMT encoding that is specifically tailored to the type inhabitation problem (i.e. it
is less general than ECTA), and yet it is less efficient. As we discussed in ğ7.2, the main source of
this inefficiency is polymorphism, which makes the search space of types infinite and precludes a
łone-shotž SMT encoding, requiring Hoogle+ to go through a series of finite approximations of the
space of types to consider. Instead, a cyclic ECTA is able to represent the entire infinite space of
types at once, and ECTA enumeration is able to explore this space efficiently, as our experiments
show. We anticipate that ECTAs will outperform SMT solvers on other similar problems that require
searching an infinite yet constrained space of terms.

Future Work. One avenue for extension is to enrich the constraint language supported by ECTAs.
The key ingredient for efficiency is that there exists a constraint-propagation mechanism that can
be interleaved with Choose. Intersection is this constraint-propagation mechanism for equality,
but there may be others. For example, disequality constraints could be processed by creating an
alternative rule to Suspend which tracks both sides of a disequality, and modifying Choose to
discharge disequality constraints or propagate them into subterms as symbols are selected.
Another path for extension is to relax the requirement for no constraints on cycles. A careful

reader may notice that Theorem 5.1 only impedes emptiness-checking; enumerating all satisfying
terms up to a fixed size is trivially decidable. Currently Hectare creates many ECTA nodes for
different term sizes, using a meta-program to iterate through successive ECTAs. With constraints on
cycles, this meta-program could be internalized, further shortening the Hectare implementation.
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