
One CFG-Generator to Rule Them All

James Koppel
MIT

Cambridge, MA, USA
jkoppel@mit.edu

Sreenidhi Nair
ByteAlly

Chennai, India
sreenidhi@byteally.com

Armando Solar-Lezama
MIT

Cambridge, MA, USA
asolar@csail.mit.edu

Abstract

This paper introduces two independent yet synergistic con-
tributions related to control-flow graphs in programming
tools. Our first contribution is a language-modular design
for the construction of CFG generators. In this paper, we
use this technique to build a complete CFG-generator for a
small language with 17 distinct node types in only 19 lines
of language-specific code. Our full implementation creates
complete control-flow graphs for 5 industrial languages in
only 1100 SLOC (averaging 122 language-specific SLOC),
compared to 2400 for combined competitors. Our second
contribution is a new program transformation primitive,
CFG-based insertion, which provides the operation “insert
statement S such that it always executes before expression
E." This operation makes it possible to build 1-line program
transformations that handle special cases across multiple
languages. Both contributions have been implemented in
Haskell in the Cubix framework, with support for C, Java,
JavaScript, Lua, and Python. Together, the two contribu-
tions of this paper make it substantially easier to build high-
fidelity CFG generators for many languages and use them in
language-parametric program transformations.

ACM Reference Format:

James Koppel, Sreenidhi Nair, and Armando Solar-Lezama. 2018.
One CFG-Generator to Rule Them All. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, Article 122,
13 pages. https://doi.org/10.1145/3276492

1 Introduction

New software becomes feasible when what once required im-
plementing a complex procedure is now done by assembling
building blocks. This is a paper about easing the implemen-
tations of tools that involve control-flow graphs, and we
begin by posing a simple source-to-source transformation
as a challenge: Some analysis has identified that a string
variable s is unsanitized at a certain use-site. How would you

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/3276492

build a tool that inserts the line s = sanitize (s); before that
use-site, as near as possible?

This operation seems trivial when one imagines the com-
mon case where s sits within a one-line statement, and the
transformation must merely insert the sanitization on the
previous line. Yet complexity appears when one considers
that the use of s may be awkwardly situated inside some
construct wiith interesting control-flow, and may have mul-
tiple predecessors, separated by some distance. A common
case is when s lies in the condition of a for-loop; then the
sanitization must be inserted before the loop, at the end of
the loop, and before every continue statement. Fig. 1 gives ex-
ample input and output for this case in C. Similar problems
arise with other control-flow constructs. When use is in the
condition of a Python elif , for instance, as in Fig. 2, adding
the sanitization will require splitting the elif into a nested
conditional (Fig. 2b).

There are many existing techniques for program transfor-
mation, such as those surveyed in [22]. To a first approxi-
mation, all of them require the programmer to eventually
specify tree rewrites, and would hence require giving many
cases to work on these examples. But, using the techniques of
this paper, as implemented in the Cubix framework, the fol-
lowing function performs this transformation on C, Python,
and three other languages, correctly handling the special
cases above.
i n s e r t S a n i t i z a t i o n ta rge tNode va r =

dominat ingPrepend targe tNode
(a s s i g n (i d en t va r)

(f u n c t i o nC a l l " s a n i t i z e "
[i d en t va r]))

Half of the magic of this snippet comes from the incremental
parametric syntax introduced in a previous publication on
the Cubix framework [13], which makes it possible for that
(assign . . .) expression1 to actually expand into one of several
language-specific variants, depending on the inferred type of
each call-site. In this paper, we introduce the other half of the
magic: the new source-to-source transformation paradigm
of control-flow based insertion, invoked here through the
dominatingPrepend function. The idea of CFG-based insertion
is to provide a new primitive operation “Insert code A at
points ensuring that it always runs before/after code B."
Behind this lies a graph search and some language-specific
operations for checking where the insertion is possible; these
1The (assign . . .) expression requires a few helper functions to compile
verbatim, filling in default parameters. We leave all discussion of Cubix’s
parametric syntax to the original Cubix paper. [13]

1

https://doi.org/10.1145/3276492
https://doi.org/10.1145/3276492

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

for (in t i = 0 ; i ++ && ! i sS topCode (s) ; i ++) {
i f (! containsCommand (s))) {

s = nex t I npu t () ;
continue ;

}

p r o c e s s (s) ;
s = nex t I npu t (s) ;

}

(a)

s = s a n i t i z e (s)
for (in t i = 0 ; i ++ && ! i sS topCode (s) ; i ++) {

i f (! containsCommand (s))) {
s = nex t I npu t () ;
s = s a n i t i z e (s)
continue ;

}

p r o c e s s (s) ;
s = nex t I npu t (s) ;
s = s a n i t i z e (s)

}

(b)

Figure 1. Sample C input (a) and output (b) for sanitization-transformation, targeting isStopCode(s).

i f n o t i f i c a t i o n R e c e i v e d () :
h a n d l eN o t i f i c a t i o n ()

e l i f isCommand (s) :
p r o c e s s (s)

e l se :
l o g (" Sk ipped ")

(a)

i f n o t i f i c a t i o n R e c e i v e d () :
h a n d l eN o t i f i c a t i o n ()

e l se :
s = s a n i t i z e (s)
i f isCommand (s) :

p r o c e s s (s)
e l se :

l o g (" Sk ipped ")

(b)

Figure 2. Sample Python input (a) and output (b) for sanitization-transformation, targeting isCommand(s).

together turn what would be a menagerie of casework into
one declarative statement of intention.
While CFG-based insertion is a useful item in the trans-

formation toolbox for any (imperative) language, its greater
promise comes from its declarative ability to abstract over
language-specific details, as illustrated here. As software
engineering becomes increasingly polyglot, with engineers
and systems fragmented across an ever-increasing set of
languages, advanced tools will increasingly require multi-
language support to be economically justifiable. The example
above shows we are able to use CFGs to do transformation
in a multi-language fashion, yet, to truly amortize the cost of
tool-development across languages, one must also amortize
the infrastructure. Can one also build the CFG-generators
themselves in a multi-language fashion?

In the other half of this paper, we answer in the affirmative,
presenting a newmonadic decomposition of CFG-generators
which allows them to be written in a language-modular fash-
ion. The upshot of this is that we were able to construct
complete CFG generators for 5 languages, passing an ex-
tensive test suite which includes CFG “challenge problems"
such as Duff’s device, in only 1100 total lines of code — and
averaging 122 lines of language-specific code — compared
to a combined 2400 lines of code in the best pre-existing
comparison CFG-generators we found. We demonstrate this
in miniature with a fully-worked tutorial: 19 lines of code
for a full CFG-generator on a language with 17 distinct node
types.

At first glance, sharing work between CFG-generators for
many languages again sounds easy, as languages are often
very similar. As many languages have while-loops, can we
just write a generic “make CFG for while" function and in-
voke it from all the language-specific generators? But the
problem is that similar languages can be subtly different. In
this case, a naive “make CFG for while" function does not
work due to the presence of control effects: loops in different
languages may interact differently with break, continue, and
goto statements within their bodies. Similar factors prevent
code reuse between while- and foreach-loops, even though
the control-flow structure is the same. And while many re-
searchers have designed datatypes for representing ASTs in
a language-modular fashion — most famously data types à
la carte [20], taken to its extreme in the Cubix framework —
we shall find that control-flow graphs, under their most com-
mon designs, require non-local informatiion to construct,
demanding recursion patterns which break the separation
between language fragments.
We answer with a fully-compositional design for CFG-

generators. Our design uses monads to separate handling of
control effects, and removes the need for non-local informa-
tion. Under this design, it becomes quite straightforward to
create a single, reusable “make CFG for while" function. Our
design further allows several standard cases to be handled
declaratively, including nodes with a default left-to-right
evaluation order, nodes which do not take part in computa-
tion (e.g.: type declarations), and nodes which introduce a

2

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

new control-flow contour (e.g.: lambdas). We explain these
techniques with a tutorial in which we construct full CFG-
generator for a small Imp language with 17 distinct node
types; including loops, lambdas, and goto; in only 19 lnes of
code.

We have implemented both the design for language-modular
CFG-generators and CFG-based insertion in the Cubix frame-
work, where we respectively used them to implement the
CFG-generators for all 5 of Cubix’s currently supported lan-
guages (C, Java, JavaScript, Lua, and Python), and to build
two source-to-source transformations which successfully
handled language corner-cases, as verified on compiler test
suites. In summary, our contributions are:
1. A new monadic decomposition of CFG-generation, which

permits CFG-generators to be built in a language-modular
fashion, and hence for much less total labor than indepen-
dent generators per language.

2. The new program-transformation operation of CFG-based
insertion, a declarative mechanism for a common subtask
of program transformations.

The remainder of the paper is organized as follows: §2 and §3
present our first contribution of building language-modular
CFG-generators. §4 presents our second contribution, CFG-
based insertion. The rest of the paper presents our implemen-
tation of both of these within Cubix, experiments, related
work, and conclusion.

Prerequisites The code in this paper is given in Haskell.
Our exposition expects the reader to be familiar with Haskell
notation, typeclasses, and the standard monads. We also
make some use of type-level programming (type-level lists
and type families), GADTs, rank-2 types, and explicit type
parameters.

2 CFG Generation: Not So Easy

Though our ultimate goal is to build language-modular CFG-
generators, modularity problems appear in CFG generators
even for one language. In this, we illustrate the problems of
naive definitions CFG generators. In a tutorial reconstruction,
we proceed to refine such a naive generator into a new,
compositional design, in preparation for generalizing this
design in §3.

2.1 A Naive CFG-Generator

Consider this datatype for a simple imperative language:
type Var = String
type Label = Int

data Exp = Add Exp Exp | Lt Exp Exp | VarExp Var

data Stmt = Assign Var Exp
| If Exp LabStmt LabStmt
| While Exp Stmt
| Block [LabStmt]

type LabStmt = (Label , Stmt)

type Graph −− definition not shown
addEdge :: Graph −> Label −> Label −> Graph
connect :: Label −> Label −> State Graph ()

optConnect :: Maybe Label −> Label −> State Graph ()
optConnect l1 (Just l2) = connect l1 l
optConnect l1 Nothing = return ()

Disregarding the extra complexity to construct basic-blocks,
a traditional statement-level CFG-generator would create
one node per statement, as a recursive traversal. We con-
struct an implementation below, and then discuss why its
design does not readily extend to a language-generic imple-
mentation.
First we design the recursion. Let us think about what

information must be passed down and up the stack in such a
traversal. There will be an edge between the last statement in
each branch of an if-statement, and the first statement after
the if. Some part of the code must have access to the nodes
of both. This can be accomplished either by passing down
the node after the if , or by passing up the set of nodes which
may be the last thing executed. In our implementation, we
choose the former: the recursion passes down the the next
node that runs after the current term.
Below is code for the CFG generator. As the language is

small, the code is short, yet contains a high density of special
cases.

genCfg :: Maybe Label −> LabStmt −> State Graph Label
genCfg next (l , Assign _ _) = do optConnect l next

return next
genCfg next (l , If _ s1 s2) = do l1 <− genCfg next s1

l2 <− genCfg next s2
connect l l1
connect l l2
return l

genCfg next (l , While _ s) = do l ' <− genCfg (Just l) s
connect l l '
optConnect l next
return l

genCfg next (l , Block ss) = do ml' <− genCfgBlock next ss
case ml' of
Just l ' −> connect l l '
Nothing −> optConnect l next

return l

genCfgBlock :: Maybe Label −> [LabStmt]
−> State Graph (Maybe Label)

genCfgBlock next [] = return Nothing
genCfgBlock next (s : ss) = do l <− genCfgBlock next ss

l ' <− genCfg (Just l) s
return l '

3

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

For a language so small, any problems that could exist in this
code would be trivial inconveniences. Yet, viewed through
a magnifying glass, it is already possible to spot two issues
that may blossom into barriers as the language grows, or
when trying to make this code language-modular.

The first is that this code is not compositional. This means
that the CFG for one node is not a function of the CFGs for
its child nodes. Indeed, some lack of modularity is already
present: thinking carefully about the reason for each line,
the handling of next nodes is derived from the design of Block
nodes (e.g.: it would be different if the cons-lists of Blockwere
replaced with snoc-lists or a binary Seq node).
The second is that the implementation of each case as-

sumess this language has no indirect control-flow. Upon the
introduction of new nodes with indirect control-flow, every
case of the CFG-generator would need to be rewritten to
thread extra state throughout the generator.

In the following sections, we construct a new architecture
that addresses all these problems.

2.2 The Case for Enter/Exit

In the previous section, we determined that the genCfg func-
tion needed to pass around non-local information because
it may sometimes need to draw an edge connecting an AST
node and its (great-)grandparent. This is also the reason
genCfg is not compositional. To make it compositional, we
must change the CFG design. Our proposal: create two CFG
nodes per AST node, representing its entry and exit.

With this change, each AST node’s CFG fragment depends
only on its children. No extra information is passed down
in recursion. And, as an added bonus, the special casing has
also been eliminated, for it stemmed from decisions over
where to handle the non-local information. Here are the first
three cases:

makeEnterExit :: State Graph (Label , Label)
−− Implementation not shown

genCfg :: LabStmt −> State Graph (Label , Label)
genCfg (_, Assign _ _) = do (enter , exit) <− makeEnterExit

connect enter exit
return (enter , exit)

genCfg (_, If _ s1 s2) = do (enter , exit) <− makeEnterExit
(enter1 , exit1) <− genCfg s1
(enter2 , exit2) <− genCfg s2
connect enter enter1
connect enter enter2
connect exit1 exit
connect exit2 exit
return (enter , exit)

genCfg (_, While _ s) = do (enter , exit) <− makeEnterExit
(enterBody, exitBody) <− genCfg s
connect enter enterBody
connect exitBody enter
connect enter exit
return (enter , exit)

While the increase in the number of CFG edges has corre-
spondingly increased the size of the code, the amount of
information has decreased thanks to the higher symmetry.
Gone are the branches; instead, each case reads as a list of
the edges corresponding to the current node.

However, the casework needed to deal with empty blocks
has not gone away — it’s gotten worse! Continuing, the case
for Block’s looks like this:
genCfg (_, Block ss) = do
(enter , exit) <− makeEnterExit
mEnterExitSS <− genCfgBlock ss
case mEnterExitSS of
Nothing −> return ()
Just (enterSS , exitSS) −> do connect enter enterSS

connect exitSS exit

return (enter , exit)

genCfgBlock :: [LabStmt] −> State Graph (Maybe (Label, Label))
−− Implementation not shown

We shall find that dealing with possibly-empty returned
nodes is such a common situation that it merits its own
primitive, and all the casework can be encapsulated in a new
operation for combining a possibly-empty pair of nodes.
type EnterExitPair = Maybe (Label, Label)

combineEnterExit :: EnterExitPair −> EnterExitPair
−> State Graph EnterExitPair

combineEnterExit Nothing p2 = return p2
combineEnterExit p1 Nothing = return p1
combineEnterExit (Just (l1 , l2)) (Just (l3 , l4)) = do

connect l2 l3
return (Just (l1 , l4))

With this new primitive, branching is eliminated. Here is the
new code for Block:
genCfg (_, Block ss) = do
(enter , exit) <− makeEnterExit
eepSS <− genCfgBlock
x <− combineEnterExit (Just (enter , enter)) eepSS
combineEnterExitPair x (Just (exit , exit))

genCfgBlock :: [LabStmt] −> State Graph EnterExitPair
genCfgBlock ss = fold (\ s mEepRest −> do

eepS <− genCfg s
eepRest <− mEepRest
combineEnterExit eepS eepRest)

Nothing
ss

2.3 Monadic Deferral

Having made CFG-generation compositional, we chase the
next milestone of modularity: how to make each case of
genCfg into an independent function? Doing so would make
it possible, for instance, to share CFG-generation code across
all languages with while-loops.

4

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

genCfgWhile :: (Label , Label) −> State Graph EnterExitPair

genCfgPython :: PyTerm −> State Graph EnterExitPair
genCfgPython (PyWhile _ s) = do sEnterExit <− genCfgPython s

genCfgWhile sEnterExit
−− ... other cases

genCfgC :: CTerm −> State Graph (Label , Label)
genCfgC (CWhile _ s) = do sEnterExit <− genCfgC s

genCfgWhile sEnterExit
−− ... other cases

This refactoring involves hoisting the recursive genCfg call
out of the case forWhile. This works for the simple language
we have used thus far. It does not workwhen genCfgmay have
non-commutative effects. Such effects in the CFG-generator
occur when there are control-effects in the code. Let us add
break and continue to our language:
data Stmt = ...

| Break
| Continue

Generating a CFG for these new nodes requires tracking
the break and continue targets. This requires adding a new
parameter to CFG generation, either explicitly, or by rolling
it into the state. The latter is clearly the more modular option.
We thus extend the state of the CFG-generator to also include
a stack of break/continue targets, and update the signatures
of other functions accordingly.
data CfgGenState = CfgGenState { graph :: Graph

, loopStack :: [(Label , Label)] }

type CfgGen a = State CfgGgenState a

combineEnterExit :: EnterExitPair −> EnterExitPair
−> CfgGen EnterExitPair

connect :: Label −> Label −> CfgGen ()
pushLoop :: Label −> Label −> CfgGen ()
popLoop :: CfgGen ()

With these additions, it is no longer possible towrite genCfgWhile

with the given signature. genCfgWhile must use pushLoop and
popLoop to communicate the break/continue targets to invo-
cations of genCfgC/genCfgPython on nodes in the loop body.
However, the CFGs for these nodes are generated before
genCfgWhile is even called. In this new language, the CFG frag-
ment for a node is no longer a function of the CFG fragments
for its subnodes. genCfg is no longer compositional. Instead,
the CFG fragment for a node also depends on the control
effects of its children. And so, by accepting a monadic value
for the CFGs of its children, genCfgWhile can control the state
passed to the recursive calls to genCfg, and again becomes
compositional:
genCfgWhile :: CfgGen (Label, Label) −> CfgGen (Label, Label)
genCfgWhile mBodyEnterExit = do
(enter , exit) <− makeEnterExit
pushLoop enter exit

(bodyEnter, bodyExit) <− mBodyEnterExit
popLoop
connect enter bodyEnter
connect bodyExit exit
connect enter exit
return (enter , exit)

genCfgBreak :: CfgGen (Label, Label)
genCfgBreak = do
(enter , exit) <− makeEnterExit
(breakTarget , continueTarget): rest <− gets loopStack
connect enter breakTarget
return (enter , exit)

genCfgContinue :: CfgGen (Label, Label)
genCfgContinue = do
(enter , exit) <− makeEnterExit
(breakTarget , continueTarget): rest <− gets loopStack
connect enter continueTarget
return (enter , exit)

It is now straightforward to define a language-specific genCfg

function which defers to these cases.
genCfg :: Stmt −> CfgGen (Label, Label)
genCfg (While _ s) = genCfgWhile (genCfg s)
genCfg Break = genCfgBreak
genCfg Continue = genCfgContinue
−− cases for Assign , If , Block not shown

2.4 Finer-Grained CFGs

Control-flow graphs are best known from their use in com-
pilers, where the definition “a CFG is a directed graph of
basic blocks" has become sacrosanct. We have already de-
parted from this somewhat by not collapsing consecutive
statements into basic blocks, and by using two nodes per
statement.

Yet smaller units also have control-flow (e.g.: f () + g () eval-
uates f () before g ()), and we argue that, for static analysis and
transformation tools, finer-grained control-flow graphs are a
better choice. Indeed, many static analysis frameworks, such
as IncA [21] and Polyglot [15], already use expression-level
CFGs. We can argue this point at length, but, for the setting
of this paper, the following observation resolves the issue
decisively: in the examples of §1, the CFG-based inserter
must find the predecessors of the condition of the loop and
conditional. It is thus not possible to build the CFG-based
inserter without a finer-grained CFG.

In the remainder of this paper, all control-flow graphs will
be expression-level.

3 Language-Modular CFG Generation

Having discovered and eliminated the bottlenecks to mod-
ularity, we can now aggressively factor out and automate
common parts. In this section, we present the remainder
of our approach to CFG-generation, and use it to create a

5

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

complete CFG-generator for a language with 17 node types
in only 19 lines of language-specific code.

3.1 Background: Unfixed Data Types, With Sorts

In this subsection, we develop the modular data types used
by the generic-programming machinery in the rest of the
section, particularly: unfixed data types, which make struc-
tured recursion schemes possible; and sorted (unfixed) data
types, which allow language engineers to direct the generic
cases.

The modular data types we present here are simpler than
the actual representation used in Cubix. Cubix’s defining
feature is that it is possible to give different languages over-
lapping syntactic definitions. But interestingly, for this appli-
cation, having languages share syntax increases code reuse
onlymarginally overmaking the cases be separable into func-
tions. We can thus omit discussion of splitting data types
into fragments, simplifying our presentation.
The definitions presented here are a diminished variant

of multi-sorted data types à la carte, the style of modular
datatypes used by Cubix. Ordinary data types à la carte are
explained in Swierstra [20]; multi-sorted ones are described
in Bahr and Hvitved [1] and Koppel et al. [13].

UnfixedDataTypes Recursive data types are self-entangled
data types, and entangled data types means entangled code.
It has been well-known that recursive datatypes hinder code
reuse. The idea of unfixed data types is to delay the recursion
as long as possible, allowing most functions to be written
on non-recursive data types. This operates by replacing all
recursive instances in a data type definition with some type
variable e, which can be read “the type of child nodes, to
be determined later." The resulting definition is a signature
describing the space of allowed nodes, but not yet the type
of trees comprised of these nodes.

data TermSig e = Assign Var Exp
| If Exp e e
| While Exp e

The original datatype is recovered by taking the type-level
fixpoint of TermSig (“tying the recursive knot").

data Fix f = In (f (Fix f))

type Term = Fix TermSig

The Term type above is now isomorphic to the following more
conventional definition:

data Term = Assign Var Exp
| If Exp Term Term
| While Exp term

An immediate advantage of unfixed data types is that they en-
able structured recursion schemes. We stated in §2 that the new
CFG-generator design is compositional, meaning that the

CFG of a node is a function of those of its subterms. The cata-
morphism recursion scheme formalizes this. A recursive func-
tion like genCfg, implemented as a catamorphism, is built out
of a function of type TermSig (m (Node, Node)) → m (Node, Node),
for some appropriatemonadm. This is called an algebra of the
TermSig functor with carrier m (Node, Node). The input to this
function is a term where each child node has been replaced
by a value of type CfgGen (CfgNode, CfgNode) (i.e.: a command
that, when run, produces a CFG and its enter/exit nodes).
The catamorphism construction combinator cata then lifts
this algebra into a recursive function over an entire term.
class Functor f where
fmap :: (a −> b) −> f a −> f b

−− Functor instance for TermSig omitted (would be auto−generated)

cata :: (Functor f) => (f a −> a) −> Fix f −> a
cata f (In t) = f (fmap (cata f) t)

As a simple example of a catamorphism, consider this func-
tion to compute the number of statements in a term. Notice
how there are no explicit recursive calls; instead, sizeF inputs
a “pre-digested" term, in which each child has been replaced
by its size.
sizeF :: TermSig Int −> Int
sizeF (Assign _ _) = 1
sizeF (If _ n1 n2) = 1 + n1 + n2
sizeF (While _ n) = 1 + n

size :: Term −> Int
size = cata sizeF

We shall demonstrate a modular genCfg built in this fashion.2

Sorts The definitions of Term and TermSig above break the
recursion in statements, but still treat expressions normally.
With that definition, one can write a statement-level CFG-
generator as a catamorphism. Yet, as discussed in §2.4, we
desire an expression-level CFG-generator. The next step is
to extend unfixed data-types to multi-sorted terms.

One approach is to place expression constructors like Add

and VarExp as alternate constructors of Term, putting them on
equal footing with If andWhile. The obvious downside is that
this type permits ill-sorted terms. The other approach is to
generalize the operation of unfixing a recursive datatype to
the unfixing of mutually-recursive datatypes. We choose the
latter, which has the added benefit that it makes the sort of
a term available for use in generic programming.

The code below constructs Term to be a family of types, one
per each sort. ExpL and StmtL are type-level tags. The types
Term ExpL and Term StmtL represent terms of sort expression
and statement, respectively. The TermSig constructor similarly
takes a parameter for the family of types of subterms of each
sort; Fig. 3 gives a pictoral representation of a similar type
2In the actual implementation, we use a recursion scheme which also per-
mits cases to inspect the children themselves. This is rarely used.

6

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

Figure 3

constructor. Whereas the previous definition of TermSig had
kind ∗ → ∗, a type constructor which takes the type of child
nodes and gives the type of terms with those children, the
new definition has kind (∗ → ∗) → (∗ → ∗) , a type construc-
tor which takes a family of types of child nodes, one for each
sort, and returns a family of types of terms, one for each sort.
data ExpL
data StmtL

data TermSig e i where
Add :: e ExpL −> e ExpL −> TermSig e ExpL
Lt :: e ExpL −> e ExpL −> TermSig e ExpL
VarExp :: Var −> TermSig e ExpL

Assign :: Var −> e ExpL −> TermSig e StmtL
If :: e ExpL −> e StmtL −> e StmtL −> TermSig e StmtL
While :: e ExpL −> e StmtL −> TermSig e StmtL

data Fix f l = In (f (Fix f) l)

type Term = Fix TermSig

All operations on unsorted terms have corresponding vari-
ants on sorted terms. We do not dwell on these. Though
they may look intimidating, they are essentially the same
as their unsorted variants, but with an extra type parameter
throughout.
class HFunctor h where
hfmap :: (forall l . f l −> g l) −> (forall l . h f l −> h g l)

hcata :: (HFunctor h) => (forall l . h a l −> a l)
−> (forall l . Fix h l −> a l)

We shall also need the hfold function in the HFoldable type-
class, an analogue of Haskell’s standard fold and Foldable. Also
helpful is the type-level K (constant) combinator, needed for
embedding types that do not have a sort parameter l inside
a multi-sorted tree.
newtype K a l = K { unK :: a}

class (HFunctor h) => HFoldable h where
hfold : (Monoid m) => h (K m) l −> m

3.2 A Generic Setup

We now proceed to develop a language-modular infrastruc-
ture for CFG-generators. We begin by defining the language
Imp, which we defined as a showcase for our techniques.
Imp features two kinds of control effects, break and goto, and
contains both lambdas and function definitions, constructs
which define new control-flow contours (i.e.: separate in-
traprocedural CFGs). It also has type declarations, for the
sole purpose of demonstrating how our approach handles
nodes which do not take part in computation. Its signature is
below. Imp has 5 base sorts: expressions, lambdas, statements,
function definitions, and types; we repurpose Haskell’s list
constructor to create new sorts for lists of statements and
function definitions. A top-level Imp program is then given
by a value of type Imp [FunDefL].
type Var = String

data ExpL; data TypeL; data LambdaL; data StmtL; data FunDefL

data ImpSig e l where
Add :: e ExpL −> e ExpL −> ImpSig e ExpL
Lt :: e ExpL −> e ExpL −> ImpSig e ExpL
VarExp :: Var −> ImpSig e ExpL
LambdaExp :: e LambdaL −> ImpSig e ExpL
CallExp :: e ExpL −> e ExpL −> ImpSig e ExpL

IntType :: ImpSig e TypeL
BoolType :: ImpSig e TypeL

Lambda :: Var −> e TypeL −> e ExpL −> ImpSig e LambdaL

Assign :: Var −> e ExpL −> ImpSig e StmtL
If :: e ExpL −> e StmtL −> e StmtL −> ImpSig e StmtL
While :: e ExpL −> e StmtL −> ImpSig e StmtL
Break :: ImpSig e StmtL
GotoLabel :: String −> ImpSig e StmtL
Goto :: String −> ImpSig e StmtL
Block :: e [StmtL] −> −> ImpSig e StmtL

EmptyStmtList :: ImpSig e [StmtL]
ConsStmt :: e StmtL −> e [StmtL] −> ImpSig e [StmtL]

FunDef :: Var −> e StmtL −> ImpSig e FunDefL

EmptyFunDefs :: ImpSig e [FunDefL]
ConsFunDef :: e FunDefL −> e [FunDefL] −> ImpSig e [FunDefL]

data Fix f l = In (f (Fix f) l)

type Imp = Fix ImpSig

Somewhat unsatisfying are the constructors for the list sorts:
EmptyStmtList, ConsStmt, EmptyFunDefs, and ConsFunDef. These
actually are not needed in the real implementation, as Cubix
has generic support for treating lists of terms as ordinary
tree nodes, but we opted not to include that feature in this
presentation.

7

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

We now state the core monad operations needed in CFG
construction.

type CfgNode = Int

class MonadCfgGen m where
makeEnterExit :: m (CfgNode, CfgNode)
connect :: CfgNode −> CfgNode −> m ()

These operations can be implemented on any state monad
whose state contains certain fields, discussed in the next
section.

class HasCfgGenState s where
−− defined in next section

instance (HasCfgGenState s) => MonadCfgGen (State s)

We define an EnterExitPair type as in §2. We abbreviate it to
EEP, as it is used quite frequently.

type EEP = Maybe (CfgNode, CfgNode)

combineEnterExit :: (MonadCfgGen m) => EEP −> EEP −> m EEP

A useful fact is that enter/exit pairs, in the presence of a
monad capable of adding edges, actually form a monoid un-
der combineEnterExit. If a, b, and c are monadic values which
evaluate to enter and exit nodes of three separate CFG frag-
ments, then a <>b <>c is a monadic value which, when eval-
uated, connects a, b, c in sequence, returning the enter and
exit of the combined graph.

instance (MonadCfg m) => Monoid (m EEP)
mempty = return Nothing
ma <> mb = do a <− ma

b <− mb
combineEnterExit a b

We shall soon give the general interface for CFG generators,
as a catamorphism whose result is a stateful computation.
One wrinkle is that values in the State monad do not have
the right type for use in a catamorphism. They must be
modified to take an extra sort parameter, which can be done
by wrapping them with the K combinator.

type HState s a = K (State s a)

Adownside is that usingHState requires frequent unwrapping
and rewrapping in order to use the monad operations. We are
now ready to give the final interface for language-specific
CFG-generators:

class (HFoldable f) => ConstructCfg f s where
constructCfg ' :: f (HState s EEP) l −> HState s EEP l

constructCfg :: (ConstructCfg f s) => Fix f l −> State s ()
constructCfg t = void (unK (hcata constructCfg ' t))

3.3 Open Products for Control Effects

Different control effects need different state. As we have
shown in §2, break and continue statements demand main-
tenance of a stack of break and continue targets. Goto state-
ments, meanwhile, demand a map of label names to targets.
As languages may have their own exotic control effects, there
can be no common CFG-generation state shared by all lan-
guages.
Our solution is to express the current CFG-generation

state as an open product. Open products permit the definition
of functions which run on any state which has a certain

field. The generic constructCfgGoto case, for instance, runs on
any state that contains a map of goto labels to targets.

A common way to implement open products is with lenses
[5]. A lens from a to b is a pair of a getter a → b, which
looks up a field of type b from a value of type a, and a setter
a → b → a, which replaces said field with a modified value.

type Lens a b = (a −> b, a −> b −> a)

There are already many Haskell libraries for automatically
generating lenses of this type (or one isomorphic to it) [10,
11, 23]. We sweep under the rug which one is used, and in-
stead use the pseudocode magicMakeLens to denote the proper
invocation of whichever library. We can now define the state
needed for each kind of control effect: the current graph
and an node-ID generator for general CFG-construction, a
stack of break targets for loops, and a goto-label map for
goto statements.

type NodeGen = Int

data CfgGenState = CfgGenState { curGraph :: Graph
, nodeGen :: LabelGen }

class HasCfgGenState s where
cfgGenState :: Lens s CfgGenState

class (HasCfgGenState s) => HasBreakStack s where
breakStack :: Lens s [CfgNode]

class (HasCfgGenState s) => HasGotoMap s where
gotoMap :: Lens s (Map String CfgNode)

We are now able to define language-agnostic CFG construc-
tion functions for all relevant statements, similar to the ex-
amples in §2.

constructCfgIf :: (HasCfgGenState s)
=> HState s EEP i −> HState s EEP j
−> HState s EEP k −> HState s EEP l

contsructCfgBreak :: (HasBreakStack s) => HState s EEP l
constructCfgWhile :: (HasBreakStack s)

=> HState s EEP i −> HState s EEP j −> HState s EEP k

constructCfgGoto :: (HasGotoMap s) => String −> HState s EEP l
constructCfgGotoLabel :: (HasGotoMap s) => String −> HState s EEP l

8

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

Of note is that, for forward-gotos, constructCfgGoto must al-
locate a CFG node for the GotoLabel statement before it is
seen.

3.4 Dispatching with Easy Cases

Most AST nodes have no interesting control-behavior. In
this section, we define a way to deal with the common cases
without writing any custom code.

We group these non-interesting nodes into three cate-
gories, discriminating by sort. Computation sorts describe
those nodes which have control flow. These AST nodes will
be given their ownCFG nodes. Suspended-computation sorts,
abbreviated “suspend sorts," are those nodes whose bodies
may have control flow, but which should be in a separate
contour, not connected to the CFG nodes of the surrounding
context. Lambda expressions are a typical example. Finally,
all other sorts are considered to not participate in the com-
putation. For a node n of such a sort, its children, if any exist,
will be sequenced and connected to the surrounding CFG
nodes, as if n did not exist.
We define type families to specify these categories. For

each language signature f, ComputationSort f returns the com-
putation sorts for that language as a type-level list, and sim-
ilar for suspend sorts. It is then possible to implement dy-
namic checks to see if a term is of a computation sort, using
standard type-level programming techniques.
type family ComputationSorts (f :: (∗ −> ∗) −> ∗ −> ∗) :: [∗]
type family SuspendSorts (f :: (∗ −> ∗) −> ∗ −> ∗) :: [∗]

isComputationSort :: Fix f l −> Bool
isSuspendSort :: Fix f l −> Bool

As a preview, here are the definitions for ImpSig.
type instance ComputationSorts ImpSig = '[ExpL, StmtL, [StmtL]]
type instance SuspendSorts ImpSig = '[LambdaL, FunDefL]

Note that. as Imp has no expressions with interesting control-
flow (e.g.: short-circuiting operators), simply removing ExpL

from the list of computation sorts would change the CFG-
generator definition to instead produce statement-level CFGs.
We intentionally include [StmtL] in the list of computation
sorts, giving ConsStmt nodes their own CFG nodes, as this
will be useful when building the CFG-based inserter.

We now turn to defining the generic cases, beginning
with the case for computation sorts. Thanks to our careful
definitions of HState and the monoid instance for enter/exit
pairs, the hfold function will run and sequence all children.
The remainder of this function allocates CFG nodes for the
current term, and connects them to the children.
constructCfgCompSort :: (HFoldable f)

=> f (HState s EEP) l −> HState s EEP l
constructCfgCompSort t = K do
(enter , exit) <− makeEnterExit
let left = return (Just (enter , enter))
let body = hfold t

let right = return (Just (enter , enter))
left <> body <> right

Notice also what happens when there are no children: body
evaluates to Nothing, and the final line simply connects enter

to exit .
The final definition of constructCfgDefault dispatches on the

sort of a term. For suspend sorts, it sequences the CFGs of
all children, but returns an empty enter/exit pair, so that
nothing will connect to the children. For non-computation
nodes, it sequences the CFGs of the children and returns
them
constructCfgDefault :: (HFoldable f)

=> f (HState s EEP) l −> HState s EEP l
constructCfgDefault t =
if isComputationSort t then
constructCfgCompSort t

else if isSuspendSort t then
K (hfold t >> return Nothing)

else
K (hfold t)

Notice that, when t is IntType or BoolType, constructCfgDefault t

has no effects and evaluates to K Nothing. Notice also how it
handles terms of sort [StmtL] (it sequences them, also creating
CFG nodes for ConsStmt terms) and terms of sort [FunDefL] (it
runs them independently).

3.5 Victory

We now give full source code for the CFG generator for Imp,
validating our claim to construct a CFG-generator for it in
only 19 lines of language-specific code. In fact, there are only
18 non-empty lines in the example below. Not shown is the
code to generate lenses in whichever library is chosen; in
Edward Kmett’s lens library [11], this would be a 1-line Tem-
plate Haskell invocation, makeLenses ′′ImpSigCfgState, yielding
our final count of 19 lines.
type instance ComputationSorts ImpSig = '[ExpL, StmtL, [StmtL]]
type instance SuspendSorts ImpSig = '[LambdaL, FunDefL]

data ImpSigCfgState = { breakStack :: [CfgNode]
, gotoMap :: Map String CfgNode
, cfgGenState :: CfgGenState }

instance HasBreakStack ImpSigCfgState where
breakStack = magicMakeLens

instance HasGotoMap ImpSigCfgState where
gotoMap = magicMakeLens

instance HasCfgGenState ImpSigCfgState where
cfgGenState = magicMakeLens

instance ConstructCfg ImpSig ImpSigCfgState where
constructCfg ' (While e s) = constructCfgWhile e s
constructCfg ' (If e s1 s2) = constructCfgIf e s1 s2
constructCfg ' Break = constructCfgBreak
constructCfg ' (GotoLabel s) = constructCfgGotoLabel s
constructCfg ' (Goto s) = constructCfgGoto s

9

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

constructCfg ' t = constructCfgDefault t

With this code, one can now run constructCfg t for any Imp
program t and obtain a control-flow graph.

The brevity of this example came in part because this lan-
guage has no “unusual" nodes: each node either fits one of
the defaults, or is a common control-flow construct for which
it is reasonable to place the behavior in a language-agnostic
function. In Cubix, we implemented CFG-generators for 5
real languages, all of which did have “unusual" nodes requir-
ing custom code. Yet they also all benefited greatly from the
predefined common cases, For JavaScript, for instance, we
were still able to define a complete CFG-generator passing
an exhaustive test suite in only 79 lines of language-specific
code, compared to 184 distinct node types.

4 CFG-Based Program Transformation

In this section, we explain our new transformation primitive,
CFG-based insertion. The code in this section involves more
algorithmic details and bookkeeping compared to that of the
previous sections. Consequently, whereas the code in the
previous sections would run verbatim except for its use of
lenses, the code in this section tends slightly more towards
pseudocode.
The goal of this section is to define the dominatingPrepend

operation. dominatingPrepend targ s modifies the program to en-
sure that s always runs before targ by inserting s at the first
possible predecessor along every control path.
dominatingPrepend :: (InsertAt f l) => Fix f i

−> Fix f l
−> CfgInsertion ()

There are many variants of this operation which we do not
present here. Aside from the obvious dominatingAppend, which
would instead ensure s runs after targ, there are variants
in how to behave if multiple insertions are performed at
the same point, and variants that can choose to treat each
insertion point differently (to e.g.: only declare a temporary
variable once).

The dominatingPrepend operation rests on both the presence
of a CFG and the InsertAt interface. The InsertAt interface pro-
vides the twin operations of “is it possible to insert this node
at this point" and of performing the actual insertion. The
utility of this interface is that it describes both the mundane
operation of inserting a statement into a list of statements as
well as more peculiar ones which cleave open a statement
to insert another.

A program point is identified by an AST node and an eval-
uation point; these shall also correspond to CFG nodes. Most
AST nodes only have two evaluation points: before (Enter)
and after (Exit) it executes. But a few, such as Python if-elif-
elif-...-else chains, also have intermediate evaluation points
(they correspondingly have more than two CFG nodes!).
data EvaluationPoint = Enter | Exit | Intermediate Int

We now define the InsertAt interface. canInsertAt @l p targ re-
turns whether a term of sort l3 can be inserted to run at the
program point defined by p and targ. insertAt p s targ modifies
targ to perform the insertion.
class InsertAt f l where
canInsertAt :: EvaluationPoint −> Fix f i −> Bool
insertAt :: EvaluationPoint −> Fix f l −> Fix f i −> Fix f i

In the previous section, it sufficed for demonstration to use
raw integer labels as CFG nodes, with no way to map be-
tween corresponding CFG and AST nodes. This section re-
quires CFG nodes with a little bit more structure (as is the
case in the actual implementation), with the ability to map
between AST and CFG nodes, where each CFG node cor-
responds to an AST node / evaluation point pair. We shall
also need to refer to terms of unknown sort, which we do
with the existential combinator E: E (Fix f) refers to a term
(Fix f l) for some unknown sort l .
data E f = forall i . E {unE :: f i }

type Graph f
type CfgNode f
evalPoint :: CfgNode f −> EvaluationPoint
termFor :: CfgNode f −> E (Fix f l)
predecessors :: CfgNode f −> [CfgNode f]

nodeFor :: Graph f −> EvaluationPoint −> Fix f l −> Maybe CfgNode

Note that nodeFor is not actually implementable as written,
for it cannot distinguish between identical terms at different
program points. This does not substantively alter our work,
as it is possible to (as is actually done in Cubix) modularly
add label annotations via an alternate fixpoint operation
data FixLab f l = In (f (FixLab f l), Label)

but we choose to omit such bookkeeping from this presen-
tation. An alternative version uses paths from the root to
identify unique subtrees.

We also define this helper function:
canInsertAtNode :: (InsertAt f l) => CfgNode f −> Bool
canInsertAtNode n = canInsertAt @l (evalPoint n) (unE (termFor n))

Wenowbegin to implement CFG-insertion.We shall demon-
strate on a tiny model of Python called Worm, capable of
expressing the two special cases described in §1.
data WormSig e l where
While :: e ExpL −> e StmtL −> WormSig e StmtL
Continue :: WormSig e Stmtl
IfElse :: e ExpL −> e StmtL −> e StmtL −> WormSig e StmtL
IfElifElse :: e ExpL −> e StmtL −− if

−> e ExpL −> e StmtL −− elif
−> e StmtL −− else
−> WormSig e StmtL

ConsStmt :: e StmtL −> e [StmtL] −> WormSig e [StmtL]
EmptyStmt :: WormSig e [StmtL]

3The@l argument is a Haskell explicit type parameter.
10

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

−− other cases not shown

As we will need to construct new terms, as is customary
with unfixed data types, we shall define smart constructors
as syntactic sugar.

iWhile :: Fix WormSig ExpL −> Fix WormSig StmtL
−> Fix WormSig Stmtl

iWhile e s = In (While e s)

−− iContinue, iIfElse , etc not shown

We begin by defining InsertAt . This benefits from an opera-
tion to check the sort of a term: isSort @StmtL t tests if t is a
statement. If it passes, an actual implementation would need
to cast t to Fix f StmtL in order to use it; we gloss over this
detail.

isSort :: Fix f i −> Bool

instance InsertAt WormSig StmtL where
canInsertAt (Intermediate 0) _ (In (IfElifElse _ _ _ _ _)) = True
canInsertAt Enter _ t = isSort @StmtL t
canInsertAt − _ _ = False

insertAt (Intermediate 0) stmt (In (IfElifElse c1 S1 c2 s2 c3)) =
iIfElse c1 s1

(iConsStmt stmt
(iConsStmt (iIfElse c2 s2 s3)

iEmptyStmt))

insertAt Enter stmt t | isSort @StmtL t = iConsStmt stmt t
insertAt _ _ _ = error "Unreachable"

In the real implementation, most InsertAt cases are variants of
inserting a statement into a list of statements. In addition to
this case for if-elif-else, other special cases include replacing
a singleton statement with a block, and splitting a Python
with (e.g.: inserting code between the calls to A() and B in
with a as A (), b as B() :).

We now turn to the components of the implementation
of dominatingPrepend. satisfyingBoundary is a standard graph al-
gorithm which finds all predecessors of a node which satisfy
some predicate. When used with canInsertAt, it locates the
places at which to perform the insertion.

satisfyingBoundary :: Graph f −> CfgNode f −> (CfgNode f −> Bool)
−> Set (CfgNode f)

satisfyingBoundary cfg start pred = go Set .empty start
where
go :: Set (CfgNode f) −> Cfgnode f −> Set (CfgNode f)
go seen x = if Set .member seen x then

Set .empty
else if pred x then
Set . singleton x

else
fold (map (go (Set . insert x seen))

(predecessors x))

Because this implementation runs on immutable trees, the
function dominatingPrependmust run in two phases: first mark-
ing the set of insertions to perform, and then performing
them. We define the monad to hold the necessary state:
data CfgInsertionState f l =

CfgInsertionState
{ pendingInsertions :: Map (CfgNode f) (Fix f l)
, cfg :: Graph }

type CfgInsertion f l = State (CfgInsertionState f l)

dominatingPrepend simply finds the insertion points and marks
the intended insertion.
dominatingPrepend :: (InsertAt f l) => Fix f i

−> Fix f l
−> CfgInsertion f l ()

dominatingPrepend target item = do
state <− get
let curCfg = cfg state
let startNode = fromJust (nodeFor curCfg Enter)
let insertionPoints =

satisfyingBoundary curCfg startNode canInsertAtNode
let insertions =

Set . fold (Set .map (\node −> Map.singleton node item)
insertionPoints)

puts (\ s −> s { pendingInsertions = insertions })

For performing the insertions, we assume a primitive rewriteAt .
rewriteAt x t f finds the subtree in t equal to x, and then
rewrites it with f, returning an updated t. Similar to the
nodeFor function, a real implementation would require either
labeled terms or paths from the root.
rewriteAt :: Term f i −> Term f j

−> (Term f i −> Term f i) −> Term f j

The final step loops over the intended insertions and per-
forms them.
performInsertions :: (InsertAt f l) => Fix f i

−> Graph f
−> Cfginsertion f l ()
−> Fix f i

performInsertions t g m =
let initialState = CfgInsertionState Map.empty g
let insertions = pendingInsertions (execState m initialState)

Map.foldrWithKey
(\ t ' node item −>

let p = evalPointNode in
rewriteAt p (termFor node) t ' (insertAt p item))

t
insertions

5 Implementation

Within this section, the term “significant lines" refers to the
number of lines in a file after removing the file prologue (i.e.:
import statements), comments/docstrings, and blank lines.
All line counts (SLOC) refer to significant lines.

11

Conference’17, July 2017, Washington, DC, USA James Koppel, Sreenidhi Nair, and Armando Solar-Lezama

Table 1. Line and token counts of CFG-generators

Language Cubix SLOC Cubix tokens Comparison Comparison SLOC Comparison Tokens

C 168 1837 Clang* [17] 1158 7962
Java 107 1374 Polyglot [18] 573 3888

JavaScript 79 1181 ast-flow-graph [8] 400 2924
Lua 148 1522 None found N/A N/A

Python 110 1261 StatiCFG [3] 232 2525
Infrastructure 475 4814

Total 1087 11989 2463 17299
*C-relevant portions only

Language-Modular CFGs We implemented CFG genera-
tion in the language-modular style in Cubix, and built CFG-
generators for C, Java, JavaScript, Lua, and Python, along
with a thorough test suite with over 3000 SLOC of unit tests,
together with 66 end-to-end tests, consisting of an input
program and its full expected graph. Even though most CFG-
generation is performed by language-agnostic code, the unit
tests are language-specific, giving us high-confidence that
our approach is flexible enough to adapt to the peculiarities
of each language while still saving substantial labor.

Table 1 gives the size of the CFG generators built in Cubix.
For each language, we searched for a comparison CFG gener-
ator, restricted to those which build a CFG from the original
AST and not for an IR. We found comparison generators for
all languages except for Lua, after having searched for one in
Lua static analysis tools and in the source code of the Lua.org
and LuaJIT implementations. We include CFG construction
code, but not code for the graph data type. We also report
token counts, computed by a lexer for the relevant imple-
mentation language, which tend to be more robust than line
counts.
This is an imperfect comparison in every way. The com-

parison CFG-generators range in quality from “part of a
major compiler" (Clang) to “visualization tool with 20 stars
on Github" (ast-flow-graph). All of the Cubix generators are
expression-level, whereas all comparison generators except
Polyglot are statement-level. On the other hand, some of
the comparison generators also do basic-block compression.
We also biased these counts against Cubix by including in-
frastructure for Cubix but not the comparison generators;
the relevant equivalents of §3.2 total 1659 SLOC and 12, 536
tokens across the 4 comparison generators. Finally, while
they are generally better than line counts, token counts are
not known to be comparable across languages.

Nonetheless, this table gives strong evidence that our ap-
proach provides substantial labor savings compared to a
single-language baseline lacking generic programming tech-
niques. Our combined generators take approximately 1100
lines compared to 2400 for the comparison generators— and
this is excluding a comparison Lua generator. And the per-
language marginal cost is over 3x fewer lines — and would

be even better if we included each other generator’s infras-
tructure.

CFG-Based Insertion We implemented a CFG-based in-
serter in Cubix in 142 SLOC. We used it to implement two of
the semantics-preserving transformations described in the
original Cubix paper: the test-coverage and three-address
code transformations (the latter is strictly more complicated
than the sanitization example in §1). These transformations
attained full semantics-preservation as measured by com-
piler test suites totalling over 5000 test files, and handled
all the special cases shown in the original Cubix paper. For
space reasons, we refer the reader to the Cubix paper [13]
for details.

6 Related Work

There have been a few works on techniques for construct-
ing control-flow graphs. FlowSpec [19], a component of the
Spoofax language workbench [9], contains a DSL for speci-
fying control-flow graphs in terms of single-pushout graph
rewrite rules [14] reminiscent of the GrGen graph-rewriting
language [6]. Though it yields compact definitions, it has
no support for generic programming. There has also been
recent work on automatically deriving CFG-generators from
operational semantics [12]. Though their technique has only
been applied to toy languages, we found their general theory
of CFGs useful for resolving debates on how to construct the
graph for some constructs. Semantic Designs DMS [2] has
a DSL based on attribute grammars for constructing CFGs.
The results are quite verbose; their Java CFG-generator is
over 5000 lines.
Despite extensive work on advanced techniques in pro-

gram transformation [22], there has been a paucity on work
which uses a graph to aid in transformation.We only know of
two works in this category. The more well-known one is Coc-
cinelle [16]. The capabilities of Coccinelle can be succinctly
described as: simultaneous associative matching/rewriting
of multiple tree patterns, connected by arbitrary control-
flow paths. In a personal conversation, one of the Coccinelle
creators summarized “We use the CFG in matching, but not
in rewriting." Though it provides an ellipsis (“...") primitive

12

One CFG-Generator to Rule Them All Conference’17, July 2017, Washington, DC, USA

which matches arbitrary sets of control-flow paths, each end
of a path is ordinary tree rewriting. Coccinelle would still
need many cases to handle the examples of §1, though “..."
may help with continue statements. More relevant and more
obscure is a technique of Griswold [7] used in the world’s
first refactoring tool. Though based on program-dependence
graphs [4] rather than CFGs, it shares the characteristic of
more closely tying the graph and rewriting, by providing
simultaneous updates on the AST and PDG.

7 Conclusion

As the diversity of technology grows, every technique to
reduce the cost of building tools is a step towards making ad-
vanced tools a part of daily programming. By teasing out the
commonalities in CFGs and transformations, the two tech-
niques of this paper offer significant savings in their narrow
domains. Our full implementation is available anonymously
from: https://github.com/uraul/language_modular_cfg.

References

[1] Patrick Bahr and Tom Hvitved. 2011. Compositional Data Types.
In Proceedings of the Seventh ACM SIGPLAN Workshop on Generic
programming, WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011.
83–94.

[2] Ira D Baxter, Christopher Pidgeon, and Michael Mehlich. 2004. DMS®:
Program Transformations for Practical Scalable Software Evolution. In
Proceedings of the 26th International Conference on Software Engineering.
IEEE Computer Society, 625–634.

[3] Aurelien Coet. 2020. Staticfg. https://github.com/coetaur0/staticfg/
tree/9948ab8574c254f69564da46c0ca30e5ac0c35a5. (2020).

[4] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The
Program Dependence Graph and its Use in Optimization. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 9, 3 (1987),
319–349.

[5] J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C
Pierce, and Alan Schmitt. 2007. Combinators for Bidirectional Tree
Transformations: A Linguistic Approach to the View-Update Problem.
ACM Transactions on Programming Languages and Systems (TOPLAS)
29, 3 (2007), 17–es.

[6] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and
Adam Szalkowski. 2006. GrGen: A Fast SPO-Based Graph Rewriting
Tool. In International Conference on Graph Transformation. Springer,
383–397.

[7] WilliamG. Griswold. 1993. Direct Update of Data FlowRepresentations
for a Meaning-Preserving Program Restructuring Tool. In SIGSOFT
’93, Proceedings of the First ACM SIGSOFT Symposium on Foundations
of Software Engineering, Los Angeles, California, USA, December 7-10,
1993. 42–55. https://doi.org/10.1145/256428.167063

[8] Julian Jensen. 2020. ast-flow-graph. https://github.com/julianjensen/
ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2.
(2020).

[9] Lennart CL Kats and Eelco Visser. 2010. The Spoofax Language Work-
bench: Rules for Declarative Specification of Languages and IDEs. Vol. 45.
ACM.

[10] Csongor Kiss, Matthew Pickering, and Nicolas Wu. 2018. Generic De-
riving of Generic Traversals. Proceedings of the ACM on Programming
Languages 2, ICFP (2018), 1–30.

[11] Edward A. Kmett. 2020. lens: Lenses, Folds and Traversals. http:
//hackage.haskell.org/package/lens-4.19.2. (April 2020).

[12] James Koppel, Kearl Jackson, and Armando Solar-Lezama. [n. d.]. Syn-
thesizing Control-Flow Graph Generators from Operational Semantics.
http://www.jameskoppel.com/files/papers/mandate_111019.pdf. ([n.
d.]).

[13] James Koppel, Varot Premtoon, and Armando Solar-Lezama. 2018. One
Tool, Many Languages: Language-Parametric Transformation with In-
cremental Parametric Syntax. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–28.

[14] Michael Löwe. 1993. Algebraic Approach to Single-Pushout Graph
Transformation. Theoretical Computer Science 109, 1-2 (1993), 181–224.

[15] Nathaniel Nystrom, Michael R Clarkson, and Andrew C Myers. 2003.
Polyglot: An Extensible Compiler Framework for Java. In International
Conference on Compiler Construction. Springer, 138–152.

[16] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
2008. Documenting and Automating Collateral Evolutions in Linux
Device Drivers. Acm sigops operating systems review 42, 4 (2008),
247–260.

[17] LLVM project authors. 2020. Clang. https://github.com/llvm/
llvm-project/tree/eed333149d178b69fdaf39b9419b7ca032520182.
(2020).

[18] Polyglot project authors. 2020. Polyglot. https:
//github.com/polyglot-compiler/polyglot/tree/
6235855368ce3b0ab27cb29cd117ca5d0fba54e7. (2020).

[19] Jeff Smits and Eelco Visser. 2017. FlowSpec: Declarative Dataflow
Analysis Specification. In Proceedings of the 10th ACM SIGPLAN Inter-
national Conference on Software Language Engineering. 221–231.

[20] Wouter Swierstra. 2008. Data Types à la Carte. Journal of Functional
Programming 18, 04 (2008), 423–436.

[21] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A
DSL for the Definition of Incremental Program Analyses. In Auto-
mated Software Engineering (ASE), 2016 31st IEEE/ACM International
Conference on. IEEE, 320–331.

[22] Eelco Visser. 2005. A Survey of Strategies in Rule-Based Program
Transformation Systems. Journal of Symbolic Computation 40, 1 (2005),
831–873.

[23] Sebastiaan Visser, Erik Hesselink, Chris Eidhof, and Sjoerd Visscher.
2020. fclabels: First class accessor labels implemented as lenses. http:
//hackage.haskell.org/package/fclabels-2.0.5. (May 2020).

13

https://github.com/uraul/language_modular_cfg
https://github.com/coetaur0/staticfg/tree/9948ab8574c254f69564da46c0ca30e5ac0c35a5
https://github.com/coetaur0/staticfg/tree/9948ab8574c254f69564da46c0ca30e5ac0c35a5
https://doi.org/10.1145/256428.167063
https://github.com/julianjensen/ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2
https://github.com/julianjensen/ast-flow-graph/tree/0c669d1dad54fa28004741a7e9cf82eee8d683e2
http://hackage.haskell.org/package/lens-4.19.2
http://hackage.haskell.org/package/lens-4.19.2
http://www.jameskoppel.com/files/papers/mandate_111019.pdf
https://github.com/llvm/llvm-project/tree/eed333149d178b69fdaf39b9419b7ca032520182
https://github.com/llvm/llvm-project/tree/eed333149d178b69fdaf39b9419b7ca032520182
https://github.com/polyglot-compiler/polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7
https://github.com/polyglot-compiler/polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7
https://github.com/polyglot-compiler/polyglot/tree/6235855368ce3b0ab27cb29cd117ca5d0fba54e7
http://hackage.haskell.org/package/fclabels-2.0.5
http://hackage.haskell.org/package/fclabels-2.0.5

	Abstract
	1 Introduction
	2 CFG Generation: Not So Easy
	2.1 A Naive CFG-Generator
	2.2 The Case for Enter/Exit
	2.3 Monadic Deferral
	2.4 Finer-Grained CFGs

	3 Language-Modular CFG Generation
	3.1 Background: Unfixed Data Types, With Sorts
	3.2 A Generic Setup
	3.3 Open Products for Control Effects
	3.4 Dispatching with Easy Cases
	3.5 Victory

	4 CFG-Based Program Transformation
	5 Implementation
	6 Related Work
	7 Conclusion
	References

